Skip to main content
Log in

Muscle fiber types, growth and development in the whole myotome of cultured Pacific bluefin tuna Thunnus orientalis

  • Original Article
  • Food Science and Technology
  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

Following the successful development of Pacific bluefin tuna (PBT) aquaculture, it is of considerable importance to determine the muscle fiber types and their growth patterns for future development. Muscle fiber profiles of dorsal ordinary, lateral ordinary (LO) and dark muscles and their growth patterns in PBT from 3.0 to 54.3 kg body weight were studied. Muscle fibers were histochemically stained for NADH-diaphorase and myosin adenosine triphosphatase activity (mATPase), and immunohistochemically stained with S-58 slow-muscle myosin antibody. All muscle fibers in dorsal and LO muscles showed low NADH-diaphorase activity, and acid-labile (pH 4.0 or 4.3) and alkali-stable mATPase activity. In LO muscle adjacent to dark muscle, three intensities of mATPase activity were observed after acid pre-incubation at pH 4.5 or 5.0, and the activity was related to the muscle fiber diameter. In dark muscle, all small and some large fibers stained intensely for NADH-diaphorase activity, related to their high aerobic metabolism. The high-active fibers with NADH-diaphorase in dark muscle were positive for S-58 antibody. Some large fibers in dark muscle showed intermediate NADH-diaphorase activity and high mATPase activity after alkali pre-incubations. These are fast-twitch oxido-glycolytic fibers in dark muscle and transformed to red muscle fibers with increasing body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hagen Ø, Solberg C, Johnston IA (2006) Sexual dimorphism of fast muscle fiber recruitment in farmed Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 261:1222–1229

    Article  Google Scholar 

  2. Sänger AM, Stroiber W (2001) Muscle fiber diversity and plasticity. In: Johnston IA (ed) Muscle growth and development. Fish physiology, vol 18. Academic Press, San Diego, pp 187–250

    Chapter  Google Scholar 

  3. Stickland NC (1983) Growth and development of muscle fibers in the rainbow trout (Salmo gairdneri). J Anat 137:323–333

    PubMed  Google Scholar 

  4. Hoyle J, Gill HS, Weatherley AH (1986) Histochemical characterization of myotomal muscle in the grass pickerel, Esox americanus vermiculatus (LeSeuer), and the muskellunge, E. masquinongy (Mitchell). J Fish Biol 28:393–401

    Article  Google Scholar 

  5. Luther PK, Munro PMG, Squire JM (1995) Muscle ultrastructure in fish. Micron 26:431–459

    Article  Google Scholar 

  6. Ellerby DJ, Altringham JD, Williams T, Block BA (2000) Slow muscle function of pacific bonito (Sarda chiliensis) during steady swimming. J Exp Biol 203:2001–2013

    PubMed  CAS  Google Scholar 

  7. Katz SL (2002) Design of heterothermic muscle in fish. J Exp Biol 205:2251–2266

    PubMed  Google Scholar 

  8. Katz SL, Shadwick RE, Syme D (2001) Enhanced power in yellowfin tuna. Nature 410:770–771

    Article  PubMed  CAS  Google Scholar 

  9. Johnston IA, Davison W, Goldspink G (1977) Energy metabolism of carp swimming muscles. J Comp Physiol 114:203–216

    CAS  Google Scholar 

  10. Johnston IA, Alderson R, Sandham C, Mitchell D, Selkirk C, Dingwall A, Nickell D, Baker R, Robertson B, White D, Springate J (2000) Patterns of muscle growth in early and late maturing populations of Atlantic salmon (Salmo salar L.). Aquaculture 189:307–333

    Article  Google Scholar 

  11. Rowlerson A, Mascarello F, Radaelli G, Veggetti A (1995) Differentiation and growth of muscle in the fish Sparus aurata (L): II. Hyperplastic and hypertrophic growth of lateral muscle from hatching to adult. J Muscle Res Cell Motil 16:223–236

    Article  PubMed  CAS  Google Scholar 

  12. Veggetti A, Mascarello F, Scapolo PA, Rowlerson A (1990) Hyperplastic and hypertrophic growth of lateral muscle in Dicentrarchus labrax (L.). Anat Embryol 182:1–10

    Article  PubMed  CAS  Google Scholar 

  13. Weatherley A, Gill HS, Lobo A (1988) Recruitment and maximal diameter of axial muscle fibers in teleost and their relationship to somatic growth and ultimate size. J Fish Biol 33:851–859

    Article  Google Scholar 

  14. Hagen Ø, Vieira VLA, Solberg S, Johnston IA (2008) Myotube production in fast myotomal muscle is switched-off at shorter body lengths in male than female Atlantic halibut (Hippoglossus hippoglossus L.) resulting in a lower final fiber number. J Fish Biol 73:139–152

    Article  Google Scholar 

  15. Love RM (1958) Studies on the North Sea cod. I. Muscle cell dimensions. J Sci Food Agric 9:195–198

    Article  CAS  Google Scholar 

  16. Yada O, Tsuchimoto M, Wang Q, Apabraza PAG, Jabarsyah A, Tachibana K (2000) Differences of muscle fiber type and temporal change of K-value among parts toward depth of dorsal muscle in carp (cultured). Fish Sci 66:147–152

    Article  CAS  Google Scholar 

  17. Bekhit AED, Faustman C (2005) Metmyoglobin reducing activity. Meat Sci 71:407–439

    Article  PubMed  CAS  Google Scholar 

  18. Hood DE (1980) Factors affecting the rate of metmyoglobin accumulation in prepackaged beef. Meat Sci 4:247–265

    Article  PubMed  CAS  Google Scholar 

  19. Ryu YC, Kim BC (2005) The relationship between muscle fiber characteristics, postmortem metabolic rate, and meat quality of pig Longissimus dorsi muscle. Meat Sci 71:351–357

    Article  PubMed  CAS  Google Scholar 

  20. Candek-Potokar M, Lefaucheur L, Zlender B, Bonneau M (1999) Effect of slaughter weight and/or age on histological characteristics of pig Longissimus dorsi muscle as related to meat quality. Meat Sci 52:95–203

    Article  Google Scholar 

  21. Davie PS, Sparksman RI (1986) Burnt tuna: an ultrastructural study of post mortem changes in muscle of yellowfin tuna (Thunnus albacares) caught on rod and reel and southern bluefin tuna (Thunnus maccoyii) caught on hand line or long line. J Food Sci 51:1122–1128

    Article  Google Scholar 

  22. Watson CL, Morrow HA, Brill RW (1992) Proteolysis of skeletal muscle in yellowfin tuna (Thunnus albacares): evidence of calpain activation. Comp Biochem Physiol 103B:881–887

    CAS  Google Scholar 

  23. Carpenè E, Veggetti A, Mascarello F (1982) Histochemical fiber types in the lateral muscle of fishes in fresh, brackish and salt water. J Exp Biol 20:379–396

    Google Scholar 

  24. Kiessling A, Ruohonen K, Bjørnevik M (2006) Muscle fiber growth and quality in fish. Archiv Tierzucht Dummerstorf 49:137–146

    Google Scholar 

  25. Catarci C (2005) The world tuna industry—an analysis of imports and prices, and of their combined impact on catches and tuna fishing capacity. Section 3-Tuna fishing industry. In: Bayliff WH, de-Leiva Moreno JI, Majkowski J (eds) Management of tuna fishing capacity: conservation and socio-economics. Second meeting of the technical advisory committee of the FAO project. Food and Agriculture Organization of the United Nations, Madrid, p 243

    Google Scholar 

  26. Fauconneau B, Chmaitilly J, Andre S, Cardinal M, Cornet J, Vallet JL, Dumont JP, Laroche M (1993) Characteristics of rainbow trout flesh: I. Chemical composition and cellularity of muscle and adipose tissues. Sciences des Aliments 13:173–187

    CAS  Google Scholar 

  27. Hatae K, Yoshimatsu F, Matsumoto JJ (1990) Role of muscle fibers in contributing firmness of cooked fish. J Food Sci 55:693–696

    Article  Google Scholar 

  28. Hurling R, Rodell JB, Hunt HD (1996) Fiber diameter and fish texture. J Texture Stud 27:679–685

    Article  Google Scholar 

  29. Johnston IA (1999) Muscle development and growth: potential implications for flesh quality in fish. Aquaculture 177:99–115

    Article  Google Scholar 

  30. Hattori N, Miyashita S, Sawada Y, Kato K, Nasu T, Okada T, Murata O, Kumai H (2001) Lateral muscle development of the Pacific bluefin tuna, Thunnus thynnus orientalis, from juvenile to young adult stage under culture condition. Suisanzoshoku 49:23–28

    Google Scholar 

  31. Sawada Y, Okada T, Miyashita S, Murata O, Kumai H (2005) Completion of the Pacific bluefin tuna Thunnus orientalis (Temminck et Schlegel) life cycle. Aquac Res 36:413–421

    Article  Google Scholar 

  32. Dubowitz V, Brooke MH (1973) Histological and histochemical reactions. In: Muscle biopsy: a modern approach, vol 2. Saunders, London, pp 20–73

  33. Johnston IA, Patterson S, Ward P, Goldspink G (1974) The histochemical demonstration of myofibrillar adenosine triphosphatase activity in fish muscle. Can J Zool 52:871–877

    Article  PubMed  CAS  Google Scholar 

  34. Fernandez DA, Clavo J, Franklin CE, Johnston IA (2000) Muscle fiber types and size distribution in sub-antarctic notothenioid fishes. J Fish Biol 56:1295–1311

    Article  CAS  Google Scholar 

  35. Crow MT, Stockdale FE (1986) Myosin expression and specialization amongst the earliest muscle fibers of the developing avian limb. Dev Biol 113:238–254

    Article  PubMed  CAS  Google Scholar 

  36. Barresi MJF, Stickney HL, Devoto SH (2000) The zebrafish slow-muscle-omitted gene product is required for hedgehog signal transduction and the development of slow muscle identity. Development 127:2189–2199

    PubMed  CAS  Google Scholar 

  37. Fernandes JMO, Mackenzie MG, Elgar G, Suzuki Y, Watabe S, Kinghorn JM, Johnston IA (2005) A genomic approach to reveal novel genes associated with myotube formation in the model teleost, Takifugu rubripes. Physiol Genomics 22:327–338

    Article  PubMed  CAS  Google Scholar 

  38. Hammill E, Wilson RS, Johnston IA (2004) Sustained swimming performance and muscle structure are altered by thermal acclimation in male mosquitofish. J Therm Biol 29:251–257

    Article  Google Scholar 

  39. Johnston IA, Abercromby M, Vieira VLA, Sigursteindóttir RJ, Kristjánsson BK, Sibthorpe D, Skúlason S (2004) Rapid evolution of muscle fiber number in postglacial population of Arctic charr Salvelinus alpinus. J Exp Biol 207:4343–4360

    Article  PubMed  Google Scholar 

  40. Bjørnevik M, Karlsen O, Johnston IA, Kiessling A (2003) Effect of sustained exercise on white muscle structure and flesh quality in farmed cod (Gadus morhua L.). Aquac Res 34:55–64

    Article  Google Scholar 

  41. Alami-Durante H, Médale F, Cluzeaud M, Kaushik SJ (2010) Skeletal muscle growth dynamics and expression of related genes in white and red muscles of rainbow trout fed diets with graded levels of a mixture of plant protein sources as substitutes for fishmeal. Aquaculture 303:50–58

    Article  CAS  Google Scholar 

  42. Dal Pai-Silva M, Carvalho RF, Pellizzon CH, Dal Pai V (2003) Muscle growth in Nile tilapia (Oreochromis niloticus): histochemical, ultrastructural and morphometric study. Tissue Cell 35:179–187

    Article  Google Scholar 

  43. Devincenti CV, Diaz AO, Goldemberg AL (2000) Characterization of the swimming muscle of the anchovy Engraulis anchiota (Hubbs and Martini 1935). Anat Histol Embryol 29:197–202

    Article  PubMed  CAS  Google Scholar 

  44. Akolkar DB, Kinoshita S, Yasmin L, Ono Y, Ikeda D, Yamaguchi H, Nakaya M, Erdogan O, Watabe S (2010) Fiber type-specific expression patterns of myosin heavy chain genes in adult torafugu (Takifugu rubripes) muscles. J Exp Biol 213:137–145

    Article  PubMed  CAS  Google Scholar 

  45. Kilarski W (1990) Histochemical characterization of myotomal muscle in the roach Rutilus rutilus (L.). J Physiol 36:353–362

    Google Scholar 

  46. Kilarski W, Kozlowska M (1985) Histochemical and electromicroscopical analysis of muscle fiber in myotome of teleost fish (Noemacheilus barbatus, L.). Gegenbaurs Morphologis Jahrbuch 131:55–72

    CAS  Google Scholar 

  47. Scapolo PA, Veggetti A, Mascarello F, Romanello MG (1988) Developmental transitions of myosin isoforms and organization of the lateral muscle in the teleost Dicentrarchus labrax (L.). Anat Embryol 178:287–295

    Article  PubMed  CAS  Google Scholar 

  48. Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott F, Freadman M (1988) Why animals have different muscle fiber types. Nature 335:824–827

    Article  PubMed  CAS  Google Scholar 

  49. Stoiber W, Haslett JR, Wenk R, Steinbacher P, Gollmann HP, Sänger AM (2002) Cellularity changes in developing red and white fish muscle at different temperatures: simulating natural environmental conditions for a temperate freshwater cyprinid. J Exp Biol 205:2349–2364

    PubMed  Google Scholar 

  50. López-Albors O, Ayala MD, Gil F, García Alcazar A, Abellán E, Latorre R, Ramírez Zarzosa G, Vázquez JM (2003) Early temperature effects on muscle growth dynamics and histochemical profile of muscle fiber of sea bass Dicentrarchus labrax L., during larval and juvenile stages. Aquaculture 220:385–406

    Article  Google Scholar 

  51. Staron RS, Pette D (1986) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry 86:19–23

    Article  PubMed  CAS  Google Scholar 

  52. Brooks S, Johnston IA (1993) Influence of development and rearing temperature on the distribution, ultrastructure and myosin sub-unit composition of myotomal muscle-fiber types in the plaice (Pleuronectes platessa). Mar Biol 117:501–513

    Google Scholar 

  53. Mascarello F, Rowlerson A, Radaelli G, Scapolo PA, Veggetti A (1995) Differentiation and growth of muscle in the fish Sparus aurata (L): I. Myosin expression and organization of fiber types in lateral muscle from hatching to adult. J Muscle Res Cell Motil 16:213–222

    Article  PubMed  CAS  Google Scholar 

  54. Veggetti A, Mascarell F, Scapolo PA, Rowlerson A, Carnevali C (1993) Muscle growth and myosin isoform transitions during development of a small teleost fish, Poecilia reticulata (Peters) (Atheriniformes, Poeciliidae): a histochemical, immunohistochemical, ultrastructural and morphometric study. Anat Embryol 187:353–361

    Article  PubMed  CAS  Google Scholar 

  55. Carpenè E, Veggetti A (1981) Increase in muscle fibers in the lateralis muscle (white portion) of Mugilidae (Pisces, Teleostei). Experientia 37:191–193

    Article  PubMed  Google Scholar 

  56. Walesby NJ, Nicol CJM, Johnston A (1982) Metabolic differentiation of muscle fibers from a haemoglobin-less (Champsocephalus gunnari Lonnberg) and a red-blooded (Notothenia rossi Fischer) Antarctic fish. Br Antarct Surv Bull 51:201–214

    Google Scholar 

  57. Rowlerson A, Scapolo A, Mascarello F, Veggetti A (1985) Comparative study of myosins present in the lateral muscle of some fish: species variations in myosin isoforms and their distribution in red, pink and white muscle. J Muscle Res Cell Motil 6:601–640

    Article  PubMed  CAS  Google Scholar 

  58. Oshima I, Iwamoto H, Nakamura YN, Takayama K, Ono Y, Murakami T, Shiba N, Tabata S, Nishimura S (2009) Comparative study of the histochemical properties, collagen content and architecture of the skeletal muscles of wild boar crossbred pigs and commercial hybrid pigs. Meat Sci 81:382–390

    Article  PubMed  CAS  Google Scholar 

  59. Roy BC, Oshima I, Miyachi H, Shiba N, Nishimura S, Tabata S, Iwamoto H (2007) The histochemical properties and collagen architecture of M. iliotibialis lateralis and M. puboischiofemoralis in male broilers with different growth rates induced by feeding at different nutritional levels. Br Poult Sci 48:312–322

    Article  PubMed  CAS  Google Scholar 

  60. Rome LC (2000) Fish as an experimental model for studying muscle function. In: Ostrander GK (ed) The handbook of experimental animals—the laboratory fish. Academic Press, London, pp 319–329

    Google Scholar 

  61. Agbulut O, Noirez P, Butler-Browne G, Jockusch H (2004) Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle. FEBS Lett 561:191–194

    Article  PubMed  CAS  Google Scholar 

  62. Chin ER, Grange RW, Viau F, Simard AR, Humphries C, Shelton J, Bassel-Duby R, Williams RS, Michel RN (2003) Alterations in slow-twitch muscle phenotype in transgenic mice over expressing the Ca2+ buffering protein parvalbumin. J Physiol 547:649–663

    Article  PubMed  CAS  Google Scholar 

  63. Ishihara A, Kawano F, Ishioka N, Oishi H, Higashibata A, Shimazu T, Ohira Y (2004) Effects of running exercise during recovery from hindlimb unloading on soleus muscle fibers and their spinal motoneurons in rats. Neurosci Res 48:119–127

    Article  PubMed  CAS  Google Scholar 

  64. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500–509

    Article  PubMed  CAS  Google Scholar 

  65. Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    PubMed  CAS  Google Scholar 

  66. Ustunel I, Akkoyunlu G, Demir R (2003) The effect of testosterone on gastrocnemius muscle fibers in growing and adult male and female rats: a histochemical, morphometric and ultrastructural study. Anat Histol Embryol 32:70–79

    Article  PubMed  CAS  Google Scholar 

  67. Kiessling A, Kiessling KH, Storebakken T, Åsgård T (1991) Changes in the structure and function of the epaxial muscle of rainbow trout (Oncorhynchus mykiss) in relation to ration and age. I. Growth dynamics. Aquaculture 93:335–356

    Article  Google Scholar 

  68. Weatherley AH, Gill HS (1985) Dynamics of increase in muscle fibers in fishes in relation to size and growth. Experientia 41:353–354

    Article  Google Scholar 

  69. Johnston IA, Manthri S, Bickerdike R, Dingwall A, Luijkx R, Campbell P, Nickell D, Alderson R (2004) Growth performance, muscle structure and flesh quality in out-of-season Atlantic salmon (Salmo salar) smolts reared under two different photoperiod regimes. Aquaculture 237:281–300

    Article  Google Scholar 

  70. Egginton S, Skilbeck C, Hoofd L, Calvo J, Johnston IA (2002) Peripheral oxygen transport in skeletal muscle of Antarctic and sub-Antarctic notothenioid fish. J Exp Biol 205:769–779

    PubMed  CAS  Google Scholar 

  71. Johnston IA, Fernandez DA, Calvo J, Vieira VLA, North AW, Abercromby M, Garland T Jr (2003) Reduction in muscle fiber number during the adaptive radiation of notothenioid fishes: a phylogenetic perspective. J Exp Biol 206:2595–2609

    Article  PubMed  Google Scholar 

  72. Valente LMP, Rocha E, Gomes EFS, Silva MW, Oliveira MH, Monteiro RAF, Fauconneau B (1999) Growth dynamics of white and red muscle fibers in fast and slow growing strains of rainbow trout. J Fish Biol 55:675–691

    Article  Google Scholar 

  73. Weatherley AH, Gill HS (1987) The biology of fish growth. Academic Press, London, p 443

    Google Scholar 

  74. Kundu R, Mansuri A (1992) Growth of pectoral muscle fibers in relation to somatic growth in some marine fishes. Neth J Zool 42:595–606

    Article  Google Scholar 

  75. Tůmova E, Teimouri A (2009) Chicken muscle fibers characteristics and meat quality: a review. Scientia Agriculturae Bohemica 40:253–258

    Google Scholar 

  76. Johnston IA, Manthri S, Alderson R, Smart A, Campbell P, Nickell D, Robertson B, Paxton CGM, Burt ML (2003) Freshwater environment affects growth rate and muscle fiber recruitment in seawater stages of Atlantic salmon (Salmo salar L.). J Exp Biol 206:1337–1351

    Article  PubMed  Google Scholar 

  77. Zimmerman AM, Lowery MS (1999) Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J Exp Biol 284:299–308

    Google Scholar 

  78. Johnston IA, Vieira VLA, Fernandez DA, Abercromby M, Brodeur JC, Peck L, Calvo J (2003) Muscle growth in Polar fish: a study of Harpagifer species with sub-Antarctic and Antarctic distributions. Fish Sci 68:1023–1028

    Google Scholar 

  79. Masuma S, Takebe T, Sakakura Y (2011) A review of the broodstock management and larviculture of the Pacific northern bluefin tuna in Japan. Aquaculture 315:2–8

    Article  Google Scholar 

  80. Anonymous (2007) http://en.wikipedia.org/wiki/Northern_bluefin_tuna

  81. Ochiai Y, Watanabe Y, Ozawa H, Ikegami S, Uchida N, Watabe S (2010) Thermal denaturation profiles of tuna myoglobin. Biosci Biotechnol Biochem 74:1673–1679

    Article  PubMed  CAS  Google Scholar 

  82. Roy BC, Miyake Y, Ando M, Kawasaki KI, Tsukamasa Y (2010) Proximate and fatty acid compositions in different flesh cuts of cultured, cultured fasted, and wild Pacific bluefin tuna (Thunnus orientalis). J Aquat Food Prod Technol 19:284–297

    Article  CAS  Google Scholar 

  83. Balshaw S, Edwards JW, Ross KE, Daughtry BJ (2008) Mercury distribution in the muscular tissue of farmed southern bluefin tuna (Thunnus maccoyii) is inversely related to the lipid content of tissues. Food Chem 111:616–621

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the International Education and Research Center for Aquaculture Science of Bluefin Tuna and Other Cultured Fish, Kinki University Global COE Program for the Ministry of Education, Culture, Sports, Science and Technology of Japan. The authors are grateful to Nantake Suisan, Osaka, Japan, for the assistance in the collection and supply of muscle samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimol Chandra Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, B.C., Ando, M., Nakatani, M. et al. Muscle fiber types, growth and development in the whole myotome of cultured Pacific bluefin tuna Thunnus orientalis . Fish Sci 78, 471–483 (2012). https://doi.org/10.1007/s12562-011-0463-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12562-011-0463-3

Keywords

Navigation