Skip to main content
Log in

A Spatio-Temporal Model for Longitudinal Image-on-Image Regression

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Neurologists and radiologists often use magnetic resonance imaging (MRI) in the management of subjects with multiple sclerosis (MS) because it is sensitive to inflammatory and demyelinative changes in the white matter of the brain and spinal cord. Two conventional modalities used for identifying lesions are T1-weighted (T1) and T2-weighted fluid-attenuated inversion recovery (FLAIR) imaging, which are used clinically and in research studies. Magnetization transfer ratio (MTR), which is available only in research settings, is an advanced MRI modality that has been used extensively for measuring disease-related demyelination both in white-matter lesions as well across normal-appearing white matter. Acquiring MTR is not standard in clinical practice, due to the increased scan time and cost. Hence, prediction of MTR based on the modalities T1 and FLAIR could have great impact on the availability of these promising measures for improved patient management. We propose a spatio-temporal regression model for image response and image predictors that are acquired longitudinally, with images being co-registered within the subject but not across subjects. The model is additive, with the response at a voxel being dependent on the available covariates not only through the current voxel but also on the imaging information from the voxels within a neighboring spatial region as well as their temporal gradients. We propose a dynamic Bayesian estimation procedure that updates the parameters of the subject-specific regression model as data accumulate. To bypass the computational challenges associated with a Bayesian approach for high-dimensional imaging data, we propose an approximate Bayesian inference technique. We assess the model fitting and the prediction performance using longitudinally acquired MRI images from 46 MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry the methods. Neuroimage 11(6):805–821

    Article  Google Scholar 

  2. Avants BB, Kandel BM, Duda JT, Cook PA, Tustison NJ, ANTsR SKL (2016) ANTs in R: quantification tools for biomedical images, R package version 0.3.3

  3. Bilgel M, Prince JL, Wong DF, Resnick SM, Jedynak BM (2016) A multivariate nonlinear mixed effects model for longitudinal image analysis: application to amyloid imaging. Neuroimage 134:658–670

    Article  Google Scholar 

  4. Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH (2002) A longitudinal study of abnormalities on mri and disability from multiple sclerosis. N Engl J Med 346(3):158–164

    Article  Google Scholar 

  5. Carass A, Wheeler MB, Cuzzocreo J, Bazin P-L, Bassett SS, Prince JL (2007) A joint registration and segmentation approach to skull stripping. In: Biomedical Imaging: from Nano to Macro, 2007. ISBI 2007. 4th IEEE International Symposium on Biomedical Imaging, pp 656–659. IEEE

  6. Casella G (1985) An introduction to empirical bayes data analysis. Am Stat 39(2):83–87

    MathSciNet  Google Scholar 

  7. Catalaa I, Grossman RI, Kolson DL, Udupa JK, Nyul LG, Wei L, Zhang X, Polansky M, Mannon LJ, McGowan JC (2000) Multiple sclerosis: magnetization transfer histogram analysis of segmented normal-appearing white matter 1. Radiology 216(2):351–355

    Article  Google Scholar 

  8. Chen Y, Wang X, Kong L, Zhu H (2016) Local region sparse learning for image-on-scalar regression. arXiv preprint arXiv:1605.08501

  9. Dworkin J D, Sweeney E M, Schindler M K, Chahin S, Reich D S, Shinohara R T (2016) Prevail: predicting recovery through estimation and visualization of active and incident lesions. NeuroImage 12:293–299

    Article  Google Scholar 

  10. Eidsvik J, Shaby BA, Reich BJ, Wheeler M, Niemi J (2014) Estimation and prediction in spatial models with block composite likelihoods. J Comput Graph Stat 23(2):295–315

    Article  MathSciNet  Google Scholar 

  11. Eloyan A, Shou H, Shinohara RT, Sweeney EM, Nebel MB, Cuzzocreo JL, Calabresi PA, Reich DS, Lindquist MA, Crainiceanu CM (2014) Health effects of lesion localization in multiple sclerosis: spatial registration and confounding adjustment. PLoS ONE 9(9):e107263

    Article  Google Scholar 

  12. Fonov VS, Evans AC, McKinstry RC, Almli C, Collins D (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47:S102

    Article  Google Scholar 

  13. Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RS (1994) Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapp 2(4):189–210

    Article  Google Scholar 

  14. Gass A, Barker G, Kidd D, Thorpe J, MacManus D, Brennan A, Tofts P, Thompson A, McDonald W, Miller D (1994) Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 36(1):62–67

    Article  Google Scholar 

  15. Goldsmith J, Huang L, Crainiceanu CM (2014) Smooth scalar-on-image regression via spatial bayesian variable selection. J Comput Graph Stat 23(1):46–64

    Article  MathSciNet  Google Scholar 

  16. Griffin C, Parker GJ, Barker G, Thompson A, Miller D (2000) Mtr and t1 provide complementary information in ms nawm, but not in lesions. Mult Scler J 6(5):327–331

    Article  Google Scholar 

  17. Grossman RI (1994) Magnetization transfer in multiple sclerosis. Ann Neurol 36(S1):S97–S99

    Article  Google Scholar 

  18. Hoff P (2011) Separable covariance arrays via the Tucker product, with applications to multivariate relational data. Bayesian Anal 6:179–196

    Article  MathSciNet  MATH  Google Scholar 

  19. Jog A, Carass A, Roy S, Pham DL, Prince JL (2015) Mr image synthesis by contrast learning on neighborhood ensembles. Med Image Anal 24(1):63–76

    Article  Google Scholar 

  20. Jog A, Carass A, Roy S, Pham DL, Prince JL (2017) Random forest regression for magnetic resonance image synthesis. Med Image Anal 35:475–488

    Article  Google Scholar 

  21. Kang J, Reich BJ, Staicu A-M (2016) Scalar-on-image regression via the soft-thresholded gaussian process. arXiv preprint arXiv:1604.03192

  22. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, Miller D, Guttmann CR, Weiner HL, Gasperini C et al (1999) Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Lancet 353(9157):964–969

    Article  Google Scholar 

  23. Lai S-H, Fang M (1999) A new variational shape-from-orientation approach to correcting intensity inhomogeneities in magnetic resonance images. Med Image Anal 3(4):409–424

    Article  Google Scholar 

  24. McDonald WI, Compston A, Edan G, Goodkin D, Hartung H-P, Lublin FD, McFarland HF, Paty DW, Polman CH, Reingold SC et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol 50(1):121–127

    Article  Google Scholar 

  25. Mejia AF, Sweeney EM, Dewey B, Nair G, Sati P, Shea C, Reich DS, Shinohara RT (2016) Statistical estimation of t1 relaxation times using conventional magnetic resonance imaging. NeuroImage 133:176–188

    Article  Google Scholar 

  26. Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee J-C, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70(5):764–773

    Article  Google Scholar 

  27. Mori S, Wakana S, Van Zijl PC, Nagae-Poetscher L (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  28. Morris JS, Baladandayuthapani V, Herrick RC, Sanna P, Gutstein H (2011) Automated analysis of quantitative image data using isomorphic functional mixed models, with application to proteomics data. Ann Appl Stat 5(2A):894

    Article  MathSciNet  MATH  Google Scholar 

  29. Muschelli J, Extrantsr: Extra Functions to Build on the ANTsR Package. R package version 2.8

  30. Polman CH, Reingold SC, Edan G, Filippi M, Hartung H-P, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW et al (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the mcdonald criteria. Ann Neurol 58(6):840–846

    Article  Google Scholar 

  31. Pomann G-M, Staicu A-M, Lobaton EJ, Mejia AF, Dewey BE, Reich DS, Sweeney EM, Shinohara RT et al (2017) A lag functional linear model for prediction of magnetization transfer ratio in multiple sclerosis lesions. Ann Appl Stat 10(4):2325–2348

    Article  MathSciNet  MATH  Google Scholar 

  32. Pomann G-M, Sweeney EM, Reich DS, Staicu A-M, Shinohara RT (2015) Scan-stratified case-control sampling for modeling blood-brain barrier integrity in multiple sclerosis. Stat Med 34(20):2872–2880

    Article  MathSciNet  Google Scholar 

  33. Ramsay JO (2006) Functional data analysis. Wiley, Hooken

    Google Scholar 

  34. Ramsay JO, Silverman BW (2006) Applied functional data analysis: methods and case studies, vol 77. Springer, New York

    MATH  Google Scholar 

  35. Reiss PT, Huo L, Zhao Y, Kelly C, Ogden RT et al (2015) Wavelet-domain regression and predictive inference in psychiatric neuroimaging. Ann Appl Stat 9(2):1076–1101

    Article  MathSciNet  MATH  Google Scholar 

  36. Roy S, Carass A, Prince JL (2013) Magnetic resonance image example-based contrast synthesis. IEEE Trans Med Imaging 32(12):2348–2363

    Article  Google Scholar 

  37. Schmierer K, Scaravilli F, Altmann DR, Barker GJ, Miller DH (2004) Magnetization transfer ratio and myelin in postmortem multiple sclerosis brain. Ann Neurol 56(3):407–415

    Article  Google Scholar 

  38. Shi R, Kang J (2015) Thresholded multiscale gaussian processes with application to bayesian feature selection for massive neuroimaging data. arXiv preprint arXiv:1504.06074

  39. Shiee N, Bazin P-L, Ozturk A, Reich DS, Calabresi PA, Pham DL (2010) A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage 49(2):1524–1535

    Article  Google Scholar 

  40. Shinohara RT, Crainiceanu CM, Caffo BS, Gaitán MI, Reich DS (2011) Population-wide principal component-based quantification of blood-brain-barrier dynamics in multiple sclerosis. NeuroImage 57(4):1430–1446

    Article  Google Scholar 

  41. Shinohara RT, Goldsmith J, Mateen F, Crainiceanu C, Reich DS (2012) Predicting breakdown of the blood-brain barrier in multiple sclerosis without contrast agents. Am J Neuroradiol 33(8):1586–1590

    Article  Google Scholar 

  42. Shinohara R T, Sweeney E M, Goldsmith J, Shiee N, Mateen F J, Calabresi P A, Jarso S, Pham D L, Reich D S, Crainiceanu C M et al (2014) Statistical normalization techniques for magnetic resonance imaging. NeuroImage 6:9–19

    Article  Google Scholar 

  43. Sled JG, Zijdenbos AP, Evans AC (1997) A comparison of retrospective intensity non-uniformity correction methods for mri. In: Biennial International Conference on Information Processing in Medical Imaging, pp 459–464. Springer

  44. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4):1487–1505

    Article  Google Scholar 

  45. Stein M (1999) Statistical interpolation of spatial data. Springer, New York

    Book  Google Scholar 

  46. Suttner L H, Mejia A, Dewey B, Sati P, Reich D S, Shinohara R T (2016) Statistical estimation of white matter microstructure from conventional mri. NeuroImage 12:615–623

    Article  Google Scholar 

  47. Sweeney E, Shinohara R, Shea C, Reich D, Crainiceanu C (2013) Automatic lesion incidence estimation and detection in multiple sclerosis using multisequence longitudinal mri. Am J Neuroradiol 34(1):68–73

    Article  Google Scholar 

  48. Sweeney E M, Shinohara R T, Dewey B E, Schindler M K, Muschelli J , Reich D S, Crainiceanu C M, Eloyan A  (2016) Relating multi-sequence longitudinal intensity profiles and clinical covariates in incident multiple sclerosis lesions. NeuroImage 10:1–17

    Article  Google Scholar 

  49. Symms M, Jäger H, Schmierer K, Yousry T (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235–1244

    Article  Google Scholar 

  50. Zhu H, Fan J, Kong L (2014) Spatially varying coefficient model for neuroimaging data with jump discontinuities. J Am Stat Assoc 109(507):1084–1098

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project described was supported in part by RO1NS085211, R21NS093349, and RO1MH 086633 from the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies. This research was partially supported by the Intramural Research Program of the National Institute of Neurological Disorders and Stroke. The authors would like to acknowledge useful suggestions of Joseph Guinness and two anonymous reviewers which helped to improve the paper in several ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana-Maria Staicu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra, A., Reich, B.J., Reich, D.S. et al. A Spatio-Temporal Model for Longitudinal Image-on-Image Regression. Stat Biosci 11, 22–46 (2019). https://doi.org/10.1007/s12561-017-9206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-017-9206-z

Keywords

Navigation