Skip to main content

Advertisement

Log in

A Bayesian Approach to Pathway Analysis by Integrating Gene–Gene Functional Directions and Microarray Data

  • Published:
Statistics in Biosciences Aims and scope Submit manuscript

Abstract

Many statistical methods have been developed to screen for differentially expressed genes associated with specific phenotypes in the microarray data. However, it remains a major challenge to synthesize the observed expression patterns with abundant biological knowledge for more complete understanding of the biological functions among genes. Various methods including clustering analysis on genes, neural network, Bayesian network and pathway analysis have been developed toward this goal. In most of these procedures, the activation and inhibition relationships among genes have hardly been utilized in the modeling steps. We propose two novel Bayesian models to integrate the microarray data with the putative pathway structures obtained from the KEGG database and the directional gene–gene interactions in the medical literature. We define the symmetric Kullback–Leibler divergence of a pathway, and use it to identify the pathway(s) most supported by the microarray data. Monte Carlo Markov Chain sampling algorithm is given for posterior computation in the hierarchical model. The proposed method is shown to select the most supported pathway in an illustrative example. Finally, we apply the methodology to a real microarray data set to understand the gene expression profile of osteoblast lineage at defined stages of differentiation. We observe that our method correctly identifies the pathways that are reported to play essential roles in modulating bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen M-H, Shao Q-M, Ibrahim JG (2000) Monte Carlo methods in Bayesian computation. Springer, New York

    Book  MATH  Google Scholar 

  2. Chen M-H, Huang L, Ibrahim JG, Kim S (2008) Bayesian variable selection and computation for generalized linear models with conjugate priors. Bayesian Anal 3:585–614

    Article  MathSciNet  Google Scholar 

  3. Curtis RK, Oresic M, Vidal-Puig A (2005) Pathways to the analysis of microarray data. Trends Biotechnol 23(8):429–435

    Article  Google Scholar 

  4. Efron B, Tibshirani R (2007) On testing the significance of sets of genes. Ann Appl Stat 1:107–129

    Article  MathSciNet  MATH  Google Scholar 

  5. Ellis B, Wong WH (2008) Learning causal Bayesian network structures from experimental data. J Am Stat Assoc 103:778–789

    Article  MathSciNet  MATH  Google Scholar 

  6. Fletcher R, Reeves CM (1964) Function minimization by conjugate gradients. Comput J 7:148–154

    Article  MathSciNet  Google Scholar 

  7. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to analyze expression data. J Comput Biol 7(3–4):601–620

    Article  Google Scholar 

  8. Geweke J (1992) Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In: Bernado JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Clarendon, Oxford

    Google Scholar 

  9. Hartmann C (2006) A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 16(3):151–158

    Article  Google Scholar 

  10. Hartemink A, Gifford DK, Jaakkola TS, Young RA (2002) Bayesian methods for elucidating genetic regulatory networks. IEEE Intell Syst Biol 17(2):37–43

    Google Scholar 

  11. Heckerman D (1995) A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06, Microsoft Research

  12. Hoffmann A, Gross G (2001) BMP signaling pathways in cartilage and bone formation. Crit Rev Eucar Gene Expr 11(1–3):23–46

    Google Scholar 

  13. Ishii M, Kurachi Y (2006) Muscarinic acetylcholine receptors. Curr Pharm Des 12(28):3573–3581

    Article  Google Scholar 

  14. Jensen ED, Gopalakrishnan R, Westendorf JJ (2010) Regulation of gene expression in osteoblasts. BioFactors 36(1):25–32

    Google Scholar 

  15. Jimia E, Hirataa S, Shina M, Yamazakia M, Fukushimaa H (2010) Molecular mechanisms of BMP-induced bone formation: Cross-talk between BMP and NF-?B signaling pathways in osteoblastogenesis. Jpn Dent Sci Rev 46(1):33–42

    Article  Google Scholar 

  16. Kalajzic I, Staale A, Yang W-P, Wu Y, Johnson SE, Feyen JHM, Krueger W, Maye P, Yu F, Zhao Y, Kuo L, Gupta RR, Achenie LEK, Wang H-W, Shin D-G, Rowe DW (2005) Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280:24618–24626

    Article  Google Scholar 

  17. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  Google Scholar 

  18. Kay GG, Abou-Donia MB, Messer WS, Murphy DG, Tsao JW, Ouslander JG (2005) Antimuscarinic drugs for overactive bladder and their potential effects on cognitive function in older patients. J Am Geriatr Soc 53(12):2195–2201

    Article  Google Scholar 

  19. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu JS (1994) The collapsed Gibbs sampler with applications to a gene regulation problem. J Am Stat Assoc 89:958–966

    MATH  Google Scholar 

  21. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  22. Monni S, Li H (2010) Bayesian methods for network-structures genomic data. In: Chen MH, Dey DK, Muller P, Sun D, Ye K (eds) Frontiers of statistical decision making and Bayesian analysis: In honor of James O. Berger. Springer, New York, pp 303–315

    Google Scholar 

  23. Newton M, Quintana F, Den Boon J, Sengupta S, Ahlquist P (2007) Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis. Ann Appl Stat 1:85–106

    Article  MathSciNet  MATH  Google Scholar 

  24. Sachs K, Gifford D, Jaakkola T, Sorger P, Lauffenburger DA (2002) Bayesian network approach to cell signaling pathway modeling. Sci Signal Transduct Knowl Environ 148:pe38

    Google Scholar 

  25. Sebastiani P, Abad M, Ramoni M (2004) Bayesian networks for genomic analysis. In: Dougherty ER, Shmulevich I, Chen J, Wang ZJ (eds) Genomic signal processing and statistics. Hindawi Publishing Corporation, New York, pp 281–320

    Google Scholar 

  26. Shen H, West M (2010) Bayesian modeling for biological annotation of gene expression pathway signatures. In: Chen MH, Dey DK, Muller P, Sun D, Ye K (eds) Frontiers of statistical decision making and Bayesian analysis: In honor of James O. Berger. Springer, New York, pp 285–302

    Google Scholar 

  27. Tilg H, Moschen AR (2006) Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 6:772–783

    Article  Google Scholar 

  28. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136(19):3205–3214

    Article  Google Scholar 

  29. Werhli A, Husmeier D (2007) Reconstructing gene regulatory networks with Bayesian network by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol 6(1):1–45

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Chen, MH., Pei, B. et al. A Bayesian Approach to Pathway Analysis by Integrating Gene–Gene Functional Directions and Microarray Data. Stat Biosci 4, 105–131 (2012). https://doi.org/10.1007/s12561-011-9046-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12561-011-9046-1

Keywords

Navigation