Skip to main content

Advertisement

Log in

The Effect of Heat and Free Chlorine Treatments on the Surface Properties of Murine Norovirus

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Heat and free chlorine are among the most efficient and commonly used treatments to inactivate enteric viruses, but their global inactivation mechanisms have not been elucidated yet. These treatments have been shown to affect at least the capsid proteins of viruses and thus may affect the surface properties (i.e. electrostatic charge and hydrophobicity) of such particles. Our aim was to study the effects of heat and free chlorine on surface properties for a murine norovirus chosen as surrogate for human norovirus. No changes in the surface properties were observed with our methods for murine norovirus exposed to free chlorine. Only the heat treatment led to major changes in the surface properties of the virus with the expression of hydrophobic domains at the surface of the particles after exposure to a temperature of 55 °C. No modification of the expression of hydrophobic domains occurred after exposure to 60 °C, and the low hydrophobic state exhibited by infectious and inactivated particles after exposure to 60 °C appeared to be irreversible for inactivated particles only, which may provide a means to discriminate infectious from inactivated murine noroviruses. When exposed to a temperature of 72 °C or to free chlorine at a concentration of 50 mg/L, the genome became available for RNases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ausar, S. F., Foubert, T. R., Hudson, M. H., Vedvick, T. S., & Middaugh, C. R. (2006). Conformational stability and disassembly of Norwalk virus-like particles. Effect of pH and temperature. The Journal of Biological Chemistry, 281(28), 19478–19488. doi:10.1074/jbc.M603313200.

    Article  CAS  PubMed  Google Scholar 

  • Belliot, G., Lavaux, A., Souihel, D., Agnello, D., & Pothier, P. (2008). Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants. Applied and Environmental Microbiology, 74(10), 3315–3318. doi:10.1128/AEM.02148-07.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belnap, D. M., Filman, D. J., Trus, B. L., Cheng, N., Booy, F. P., Conway, J. F., et al. (2000). Molecular tectonic model of virus structural transitions: The putative cell entry states of poliovirus. Journal of virology, 74(3), 1342–54. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=111469&tool=pmcentrez&rendertype=abstract

  • Bolton, S. L., Kotwal, G., Harrison, M. A., Law, S. E., Harrison, J. A., & Cannon, J. L. (2013). Sanitizer efficacy against murine norovirus, a surrogate for human norovirus, on stainless steel surfaces when using three application methods. Applied and Environmental Microbiology, 79(4), 1368–1377. doi:10.1128/AEM.02843-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breindl, M. (1971). The structure of heated poliovirus particles. The Journal of General Virology, 11(3), 147–156. doi:10.1099/0022-1317-11-3-147.

    Article  CAS  PubMed  Google Scholar 

  • Brié, A., Bertrand, I., Meo, M., Boudaud, N., & Gantzer, C. (2016). The Effect of Heat on the Physicochemical Properties of Bacteriophage MS2. Food and Environmental Virology. doi:10.1007/s12560-016-9248-2.

    Google Scholar 

  • Cromeans, T., Park, G. W., Costantini, V., Lee, D., Wang, Q., Farkas, T., et al. (2014). Comprehensive comparison of cultivable norovirus surrogates in response to different inactivation and disinfection treatments. Applied and Environmental Microbiology, 80(18), 5743–5751. doi:10.1128/AEM.01532-14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Curry, S., Chow, M., & Hogle, J. M. (1996). The poliovirus 135S particle is infectious. Journal of virology, 70(10), 7125–7131. Accessed Decembe 5, 2014. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=190765&tool=pmcentrez&rendertype=abstract.

  • de Abreu Corrêa, A., Carratala, A., Barardi, C. R. M., Calvo, M., Girones, R., & Bofill-Mas, S. (2012). Comparative inactivation of murine norovirus, human adenovirus, and human JC polyomavirus by chlorine in seawater. Applied and Environmental Microbiology, 78(18), 6450–6457. doi:10.1128/AEM.01059-12.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Roda Husman, A. M., Lodder, W. J., Rutjes, S. A., Schijven, J. F., & Teunis, P. F. M. (2009). Long-term inactivation study of three enteroviruses in artificial surface and groundwaters, using PCR and cell culture. Applied and Environmental Microbiology, 75(4), 1050–1057. doi:10.1128/AEM.01750-08.

    Article  PubMed  Google Scholar 

  • Dika, C., Ly-Chatain, M. H., Francius, G., Duval, J. F. L., & Gantzer, C. (2013). Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 435, 178–187. doi:10.1016/j.colsurfa.2013.02.045.

    Article  CAS  Google Scholar 

  • EFSA. (2016). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. 191p. doi:10.2903/j.efsa.2015.4329

  • Ettayebi, K., Crawford, S. E., Murakami, K., Broughman, J. R., Karandikar, U., Tenge, V. R., et al. (2016). Replication of human noroviruses in stem cell-derived human enteroids. Science. doi:10.1126/science.aaf5211.

    PubMed  PubMed Central  Google Scholar 

  • Fricks, C. E., & Hogle, J. M. (1990). Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. Journal of virology, 64(5), 1934–45. Accessed 5, 2014. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=249347&tool=pmcentrez&rendertype=abstract.

  • Gassilloud, B., Schwartzbrod, L., & Gantzer, C. (2003). Presence of viral genomes in mineral water: a sufficient condition to assume infectious risk? Applied and Environmental Microbiology, 69(7), 3965–3969. doi:10.1128/AEM.69.7.3965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard, M., Mattison, K., Fliss, I., & Jean, J. (2016). Efficacy of oxidizing disinfectants at inactivating murine norovirus on ready-to-eat foods. International Journal of Food Microbiology, 219, 7–11. doi:10.1016/j.ijfoodmicro.2015.11.015.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. J., Wikswo, M. E., Pringle, K., Gould, L. H., & Parashar, U. D. (2014). Vital signs: foodborne norovirus outbreaks - United States, 2009–2012. MMWR. Morbidity and mortality weekly report, 63(22), 491–5. Accessed September 12, 2014, http://www.ncbi.nlm.nih.gov/pubmed/24898166.

  • Hirneisen, K. A., & Kniel, K. E. (2013). Norovirus surrogate survival on spinach during preharvest growth. Phytopathology, 103(4), 389–394. doi:10.1094/PHYTO-09-12-0231-FI.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, S., Alhatlani, B., Arias, A., Caddy, S. L., Christodoulou, C., Cunha, J. B., et al. (2015). Murine norovirus: propagation, quantification, and genetic manipulation. Current protocols in microbiology, 33(2), 15K.2.1–61. doi:10.1002/9780471729259.mc15k02s33

  • ISO (1985). ISO 7393-2. Water quality: Determination of free chlorine and total chlorine. Part 2: Colorimetric method using N,N-diethyl-1,4-phenylenediamine, for routine control purposes.

  • ISO (2013). ISO/TS 15216-1: Microbiology of food and animal feed—Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR—Part 1: Method for quantification.

  • Jones, M. K., Grau, K. R., Costantini, V., Kolawole, A. O., de Graaf, M., Freiden, P., et al. (2015). Human norovirus culture in B cells. Nature Protocols, 10(12), 1939–1947. doi:10.1038/nprot.2015.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie, 162(4), 480–483. doi:10.1007/BF01863914.

    Article  Google Scholar 

  • Karst, S. M., & Wobus, C. E. (2015). A working model of how noroviruses infect the intestine. PLoS Pathogens, 11, e1004626. doi:10.1371/journal.ppat.1004626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knight, A., Haines, J., Stals, A., Li, D., Uyttendaele, M., Knight, A., et al. (2016). A systematic review of human norovirus survival reveals a greater persistence of human norovirus RT-qPCR signals compared to those of cultivable surrogate viruses. International Journal of Food Microbiology, 216, 40–49. doi:10.1016/j.ijfoodmicro.2015.08.015.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. W., Xin, Z. T., Wang, X. W., Zheng, J. L., & Chao, F. H. (2002). Mechanisms of inactivation of hepatitis a virus by chlorine. Applied and Environmental Microbiology, 68(10), 4951–4955. doi:10.1128/AEM.68.10.4951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, M. Y., Kim, J.-M., & Ko, G. (2010). Disinfection kinetics of murine norovirus using chlorine and chlorine dioxide. Water Research, 44(10), 3243–3251. doi:10.1016/j.watres.2010.03.003.

    Article  CAS  PubMed  Google Scholar 

  • Nuanualsuwan, S., & Cliver, D. O. (2002). Pretreatment to avoid positive RT-PCR results with inactivated viruses. Journal of virological methods, 104(2), 217–25. http://www.ncbi.nlm.nih.gov/pubmed/12088831

  • Nuanualsuwan, S., & Cliver, D. O. (2003). Capsid functions of inactivated human picornaviruses and feline calicivirus. Applied and Environmental Microbiology, 69(1), 350–357. doi:10.1128/AEM.69.1.350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien, R. T., & Newman, J. (1979). Structural and compositional changes associated with chlorine inactivation of polioviruses. Applied and Environmental Microbiology, 38(6), 1034–1039. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=291240&tool=pmcentrez&rendertype=abstract

  • Page, M. A., Shisler, J. L., & Mariñas, B. J. (2010). Mechanistic aspects of adenovirus serotype 2 inactivation with free chlorine. Applied and Environmental Microbiology, 76(9), 2946–2954. doi:10.1128/AEM.02267-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. Y., Kim, A.-N., Lee, K.-H., & Ha, S.-D. (2015). Ultraviolet-C efficacy against a norovirus surrogate and hepatitis A virus on a stainless steel surface. International Journal of Food Microbiology, 211, 73–78. doi:10.1016/j.ijfoodmicro.2015.07.006.

    Article  CAS  PubMed  Google Scholar 

  • Pecson, B. M., Martin, L. V., & Kohn, T. (2009). Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results. Applied and Environmental Microbiology, 75(17), 5544–5554. doi:10.1128/AEM.00425-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Predmore, A., Sanglay, G., Li, J., & Lee, K. (2015). Control of human norovirus surrogates in fresh foods by gaseous ozone and a proposed mechanism of inactivation. Food Microbiology, 50, 118–125. doi:10.1016/j.fm.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  • Prevost, B., Goulet, M., Lucas, F. S., Joyeux, M., Moulin, L., & Wurtzer, S. (2016). Viral persistence in surface and drinking water: Suitability of PCR pre-treatment with intercalating dyes. Water Research, 91, 68–76. doi:10.1016/j.watres.2015.12.049.

    Article  CAS  PubMed  Google Scholar 

  • Richards, G. P. (2012). critical review of norovirus surrogates in food safety research: Rationale for considering volunteer studies, 6–13. doi:10.1007/s12560-011-9072-7

  • Ruokola, P., Dadu, E., Kazmertsuk, A., Häkkänen, H., Marjomäki, V., & Ihalainen, J. A. (2014). Raman spectroscopic signatures of echovirus 1 uncoating. Journal of Virology, 88(15), 8504–8513. doi:10.1128/JVI.03398-13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Samandoulgou, I., Fliss, I., & Jean, J. (2015). Zeta potential and aggregation of virus-like particle of human norovirus and feline calicivirus under different physicochemical conditions. Food and Environmental Virology, 7(3), 249–260. doi:10.1007/s12560-015-9198-0.

    Article  CAS  PubMed  Google Scholar 

  • Sano, D., Ohta, T., Nakamura, A., Nakagomi, T., Nakagomi, O., & Okabe, S. (2015). Culture-independent evaluation of non-enveloped virus infectivity reduced by free chlorine disinfection. Applied and Environmental Microbiology, 81(8), AEM.03802–AEM.03814. doi:10.1128/AEM.03802-14.

    Article  Google Scholar 

  • Sano, D., Pintó, R. M., Omura, T., & Bosch, A. (2010). Detection of oxidative damages on viral capsid protein for evaluating structural integrity and infectivity of human norovirus. Environmental Science and Technology, 44(2), 808–812. doi:10.1021/es9018964.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, S. R., Leon, J. S., Schwab, K. J., Lyon, G. M., Dowd, M., McDaniels, M., et al. (2011). Norovirus infectivity in humans and persistence in water. Applied and Environmental Microbiology, 77(19), 6884–6888. doi:10.1128/AEM.05806-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sigstam, T., Gannon, G., Cascella, M., Pecson, B. M., Wigginton, K. R., & Kohn, T. (2013). Subtle differences in virus composition affect disinfection kinetics and mechanisms. Applied and Environmental Microbiology, 79(11), 3455–3467. doi:10.1128/AEM.00663-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tojo, K., Sano, D., Miura, T., Nakagomi, T., Nakagomi, O., & Okabe, S. (2013). A new approach for evaluating the infectivity of noncultivatable enteric viruses without cell culture. Water science and technology: A Journal of the International Association on Water Pollution Research, 67(10), 2236–2240. doi:10.2166/wst.2013.114.

    Article  CAS  Google Scholar 

  • Topping, J. R., Schnerr, H., Haines, J., Scott, M., Carter, M. J., Willcocks, M. M., et al. (2009). Temperature inactivation of Feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction-A novel method for predicting virus infectivity. Journal of Virological Methods, 156(1–2), 89–95. doi:10.1016/j.jviromet.2008.10.024.

    Article  CAS  PubMed  Google Scholar 

  • Tuthill, T. J., Groppelli, E., Hogle, J. M., & Rowlands, D. J. (2010). Picornaviruses. Current Topics in Microbiology and Immunology, 343, 43–89. doi:10.1007/82_2010_37.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoef, L., Hewitt, J., Barclay, L., Ahmed, S. M., Lake, R., Hall, A. J., et al. (2015). Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerging Infectious Diseases, 21(4), 592–599. doi:10.3201/eid2104.141073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Q., & Kniel, K. E. (2016). Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Applied and Environmental Microbiology, 82(2), 705–713. doi:10.1128/AEM.02990-15.

    Article  CAS  PubMed Central  Google Scholar 

  • Wigginton, K. R., & Kohn, T. (2012). Virus disinfection mechanisms: the role of virus composition, structure, and function. Current Opinion in Virology, 2(1), 84–89. doi:10.1016/j.coviro.2011.11.003.

    Article  CAS  PubMed  Google Scholar 

  • Wigginton, K. R., Pecson, B. M., Bosshard, F., Kohn, T., & Sigstam, T. (2012). Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity. Environmental Science and Technology, 46(21), 12069–12078. doi:10.1021/es3029473.

    Article  CAS  PubMed  Google Scholar 

  • Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K.-O., Sosnovtsev, S. V., Belliot, G., et al. (2004). Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology, 2(12), e432. doi:10.1371/journal.pbio.0020432.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeap, J. W., Kaur, S., Lou, F., Dicaprio, E., Morgan, M., & Linton, R. (2016). Inactivation kinetics and mechanism of a human norovirus surrogate on stainless steel coupons via chlorine dioxide gas. Applied and Environmental Microbiology, 82(1), 116–123. doi:10.1128/AEM.02489-15.Editor.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The results of this study were obtained within the scope of CapsiVir, a project coordinated by ACTALIA and funded by the “Conseil Régional de Basse Normandie”. This study, labelled by the competitiveness cluster VALORIAL, was also supported by the Joint Technical Unit ACTIA VIROcontrol and the “Syndicat des Fabricants des Produits Frais Prêts à l’Emploi” (cluster of ready-to-eat food industries: Florette, Bonduelle, Crudettes, and Rosée des Champs).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bertrand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brié, A., Razafimahefa, R., Loutreul, J. et al. The Effect of Heat and Free Chlorine Treatments on the Surface Properties of Murine Norovirus. Food Environ Virol 9, 149–158 (2017). https://doi.org/10.1007/s12560-016-9271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-016-9271-3

Keywords

Navigation