Skip to main content
Log in

Automatic Assessment of Motor Impairments in Autism Spectrum Disorders: A Systematic Review

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is mainly described as a disorder of communication and socialization. However, motor abnormalities are also common in ASD. New technologies may offer quantitative and automatic metrics to measure movement difficulties. We sought to identify computational methods to automatize the assessment of motor impairments in ASD. We systematically searched for the terms ’autism’, ’movement’, ’automatic’, ’computational’ and ’engineering’ in IEEE (Institute of Electrical and Electronics Engineers), Medline and Scopus databases and reviewed the literature from inception to 2018. We included all articles discussing: (1) automatic assessment/new technologies, (2) motor behaviours and (3) children with ASD. We excluded studies that included patient’s or parent’s reported outcomes as online questionnaires that focused on computational models of movement, but also eye tracking, facial emotion or sleep. In total, we found 53 relevant articles that explored static and kinetic equilibrium, like posture, walking, fine motor skills, motor synchrony and movements during social interaction that can be impaired in individuals with autism. Several devices were used to capture relevant motor information such as cameras, 3D cameras, motion capture systems, accelerometers. Interestingly, since 2012, the number of studies increased dramatically as technologies became less invasive, more precise and more affordable. Open-source software has enabled the extraction of relevant data. In a few cases, these technologies have been implemented in serious games, like “Pictogram Room”, to measure the motor status and the progress of children with ASD. Movement computing opens new perspectives for patient assessment in ASD research, enabling precise characterizations in experimental and at-home settings, and a better understanding of the role of sensorimotor disturbances in the development of social cognition and ASD. These methods would likely enable researchers and clinicians to better distinguish ASD from other motors disorders while facilitating an improved monitoring of children’s progress in more ecological settings (i.e. at home or school).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ASD:

Autism spectrum disorder

ADI:

Autism Diagnostic Interview-Revised

ADOSő-2:

Autism Diagnostic Observation Schedule -2

BHK:

Concise Evaluation Scale for Children’s Handwriting

BOT-2:

Bruininks-Oseretsky Test of Motor Proficiency

CARS:

Childhood Autism Rating Scale

CNN:

Convolutional Neural Network

DBD:

Developmental Behaviour Checklist

DCD:

Developmental coordination Disorder

DCDDaily-Q:

Developmental Coordination Disorder Daily-Questionnaire

DSM-5:

Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition

GARS:

Gilliam Autism Rating Scale

Hz:

Hertz

IEEE:

Institute of Electrical and Electronics Engineers

ICBS:

Infant and Caregiver Behavior Scale

ICD-10:

International Classification of Disease

JA:

Joint Attention

MABC-2:

Movement Assessment Battery for Children

M-CHAT:

Modified Checklist for Autism in Toddlers

M-CHAT-R/F:

Modified Checklist for Autism in Toddlers, Revised with Follow-Up (M-CHAT- R/F)

MRI:

Magnetic Resonance Imagery

MSEL:

Mullen Scales of Early Learning

NDDs:

Neurodevelopmental Disorders

NDE:

Neuro-Developmental Engineering

NN:

Neural Networks

NP-MOT:

Neuro-Psychomotrian evaluation of the child

PAC:

Pedagogical Analysis and Curriculum

PDF:

Probability Density Functions

PEP-R:

Profil Psycho- Educatif (PsychoEducational Profile—Revised)

PRISMA:

Preferred Reporting Items for Systematic Reviews and Meta-Analyses

RBS-R:

Stereotyped Behavior Subscale of the Repetitive Behavior Scale-Revised

RGB-D sensor:

Red, Green, Blue—Depth sensor

SRS:

Social Responsiveness Scale

SMM:

Stereotypical Motor Movements

SVM:

Support Vector Machine

TD children:

Typically Developing children

TGMD-2:

Test of Gross Motor Development

WASI:

Wechsler Abbreviated Scale of Intelligence

WISC:

Wechsler Intelligence Scale for Children

WPPSI:

Wechsler Preschool and Primary Scale of Intelligence

References

  1. IEEE xplore digital library. https://ieeexplore.ieee.org/xplore/home.jsp, accessed 2019-09-25.

  2. The largest database of peer-reviewed literature - scopus | elsevier solutions. https://www.elsevier.com/solutions/scopus accessed 2019-09-25.

  3. OpenPTrack enabling collaborative extended reality experiences. http://openptrack.org/, accessed 2019-09-25.

  4. PEBL psychological test battery. http://pebl.sourceforge.net/battery.html accessed 2019-09-25.

  5. PubMed. https://www.ncbi.nlm.nih.gov/pubmed/.

  6. Tracking multiple people in a multi-camera environment CVLAB. https://www.epfl.ch/labs/cvlab/research/research-surv/research-body-surv-index-php/ accessed 2019-09-25.

  7. ZFace. http://zface.org/ 2019-09-25.

  8. Albaret J, De Castelnau P. Diagnostic procedures for developmental coordination disorder. Developmental Coordination Disorder. A Review of Current Approaches. Solal: Marseille; 2007. p. 27–82.

    Google Scholar 

  9. Albinali F, Goodwin MS, Intille SS. Recognizing stereotypical motor movements in the laboratory and classroom: a case study with children on the autism spectrum. In Proceedings of the 11th international conference on Ubiquitous computing, ACM. 2009. pp.71–80.

  10. Anzalone SM, Tilmont E, Boucenna S, Xavier J, Jouen AL, Bodeau N, Maharatna K, Chetouani M, Cohen D, Group MS, et al. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3d+ time) environment during a joint attention induction task with a robot. Res Autism Spectr Disord. 2014;8(7):814–826.

  11. Anzalone SM, Xavier J, Boucenna S, Billeci L, Narzisi A, Muratori F, Cohen D, Chetouani M. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recogn Lett. 2018.

  12. Anzulewicz A, Sobota K, Delafield-Butt JT. Toward the autism motor signature: Gesture patterns during smart tablet gameplay identify children with autism. Sci Rep. 2016;6:31107.

    Article  Google Scholar 

  13. Apicella F, Chericoni N, Costanzo V, Baldini S, Billeci L, Cohen D, Muratori F. Reciprocity in interaction: a window on the first year of life in autism. Autism Res Treat. 2013.

  14. Asperger H, Frith UT. ’autisticf psychopathy’in childhood.

  15. Asselborn T, Gargot T, Kidziński L, Johal W, Cohen D, Jolly C, Dillenbourg P. Automated human-level diagnosis of dysgraphia using a consumer tablet. NPJ Digital Medicine. 2018;1(1):42.

  16. Association AP, et al. Diagnostic and statistical manual of mental disorders (DSM-5®). American Psychiatric Pub. 2013.

  17. Bandini LG, Gleason J, Curtin C, Lividini K, Anderson SE, Cermak SA, Maslin M, Must A. Comparison of physical activity between children with autism spectrum disorders and typically developing children. Autism. 2013;17(1):44–54.

    Article  Google Scholar 

  18. Bangerter A, Ness S, Aman MG, Esbensen AJ, Goodwin MS, Dawson G, Hendren R, Leventhal B, Khan A, Opler M, et al. Autism behavior inventory: A novel tool for assessing core and associated symptoms of autism spectrum disorder. J Child Adolesc Psychopharmacol. 2017;27(9):814–22.

    Article  Google Scholar 

  19. Benoit J, Onyeaka H, Keshavan M, Torous J. Systematic review of digital phenotyping and machine learning in psychosis spectrum illnesses. Harv Rev Psychiatry. 2020;28(5):296–304.

    Article  Google Scholar 

  20. Bhatt U, Andrus M, Weller A, Xiang A. Machine learning explainability for external stakeholders. arXiv preprint. 2020. arXiv:2007.05408.

  21. Bhatt U, Xiang A, Sharma S, Weller A, Taly A, Jia Y, Ghosh J, Puri R, Moura JM, Eckersley P. Explainable machine learning in deployment. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency. 2020. pp.648–657.

  22. Billing E, Belpaeme T, Cai H, Cao H-L, Ciocan A, Costescu C, David D, Homewood R, Hernandez Garcia D, Gómez Esteban P, et al. The dream dataset: Supporting a data-driven study of autism spectrum disorder and robot enhanced therapy. PLoS ONE. 2020;15(8).

    Article  Google Scholar 

  23. Bonnet-Brilhault F. Lautisme: un trouble neuro-développemental précoce. Archives de Pédiatrie. 2017;24(4):384–90.

    Article  Google Scholar 

  24. Boucenna S, Anzalone S, Tilmont E, Cohen D, Chetouani M. Learning of social signatures through imitation game between a robot and a human partner. IEEE Trans Auton Ment Dev. 2014;6(3):213–25.

    Article  Google Scholar 

  25. Boucenna S, Narzisi A, Tilmont E, Muratori F, Pioggia G, Cohen D, Chetouani M. Interactive technologies for autistic children: A review. Cogn Comput. 2014;6(4):722–40.

    Article  Google Scholar 

  26. Bugnariu N, Young C, Rockenbach K, Patterson RM, Garver C, Ranatunga I, Beltran M, Torres-Arenas N, Popa D. Human-robot interaction as a tool to evaluate and quantify motor imitation behavior in children with autism spectrum disorders. In 2013 International Conference on Virtual Rehabilitation (ICVR), IEEE. 2013. pp.57–62.

  27. Burger M, Louw QA. The predictive validity of general movements-a systematic review. Eur J Paediatr Neurol. 2009;13(5):408–20.

    Article  Google Scholar 

  28. Cabibihan J-J, Javed H, Aldosari M, Frazier T, Elbashir H. Sensing technologies for autism spectrum disorder screening and intervention. Sensors. 2017;17(1):46.

    Google Scholar 

  29. Caçola P, Miller HL, Williamson PO. Behavioral comparisons in autism spectrum disorder and developmental coordination disorder: A systematic literature review. Res Autism Spectr Disord. 2017;38:6–18.

    Article  Google Scholar 

  30. Calhoun M, Longworth M, Chester VL. Gait patterns in children with autism. Clin Biomech Elsevier Ltd. 2011;26(2):200–6.

    Article  Google Scholar 

  31. Campbell K, Carpenter KL, Hashemi J, Espinosa S, Marsan S, Borg JS, Chang Z, Qiu Q, Vermeer S, Adler E, et al. Computer vision analysis captures atypical attention in toddlers with autism. Autism. 2019;23(3):619–28.

    Article  Google Scholar 

  32. Campione GC, Piazza C, Villa L, Molteni M. Three-dimensional kinematic analysis of prehension movements in young children with autism spectrum disorder: new insights on motor impairment. J Autism Dev Disord. 2016;46(6):1985–99.

    Article  Google Scholar 

  33. Campolo D, Taffoni F, Schiavone G, Formica D, Guglielmelli E, Keller F. Neuro-developmental engineering: Towards early diagnosis of neuro-developmental disorders. InTech: In New developments in biomedical engineering; 2010.

    Google Scholar 

  34. Campolo D, Taffoni F, Schiavone G, Laschi C, Keller F, Guglielmelli E. A novel technological approach towards the early diagnosis of neurodevelopmental disorders. In 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE. 2008. pp.4875–4878.

  35. Candini M, Giuberti V, Manattini A, Grittani S, di Pellegrino G, Frassinetti F. Personal space regulation in childhood autism: Effects of social interaction and person’s perspective. Autism Res. 2017;10(1):144–54.

    Article  Google Scholar 

  36. Carmosino K, Grzeszczak A, McMurray K, Olivo A, Slutz B, Zoll B, Donahoe-Fillmore B, Brahler CJ. Test items in the complete and short forms of the bot-2 that contribute substantially to motor performance assessments in typically developing children 6–10 years of age. J Stud Phys Ther Res. 2014;7:2.

    Google Scholar 

  37. Charles M, Soppelsa R, Albaret JM. Bhk: échelle d’évaluation rapide de l’écriture chez l’enfant. Ecpa.

  38. Chester VL, Calhoun M. Gait symmetry in children with autism. Autism Res Treat. 2012.

  39. Cohen D, Cassel RS, Saint-Georges C, Mahdhaoui A, Laznik M-C, Apicella F, Muratori P, Maestro S, Muratori F, Chetouani M. Do parentese prosody and fathers’ involvement in interacting facilitate social interaction in infants who later develop autism? PLoS ONE. 2013;8(5).

    Article  Google Scholar 

  40. Cook J. From movement kinematics to social cognition: the case of autism. Phil Trans R Soc B. 2016;371(1693):20150372.

    Article  Google Scholar 

  41. Costanzo V, Chericoni N, Amendola FA, Casula L, Muratori F, Scattoni ML, Apicella F. Early detection of autism spectrum disorders: from retrospective home video studies to prospective high risk sibling studies. Neurosci Biobehav Rev. 2015;55:627–35.

    Article  Google Scholar 

  42. Crippa A, Salvatore C, Perego P, Forti S, Nobile M, Molteni M, Castiglioni I. Use of machine learning to identify children with autism and their motor abnormalities. J Autism Dev Disord. 2015;45(7):2146–56.

    Article  Google Scholar 

  43. Dai J, Chen Y, Xia C, Zhou J, Liu C, Chen C. Digital sensory phenotyping for psychiatric disorders. J Psychiatry Brain Sci. 2020;5:3.

    Google Scholar 

  44. Daniels AM, Mandell DS. Explaining differences in age at autism spectrum disorder diagnosis: A critical review. Autism. 2014;18(5):583–97.

    Article  Google Scholar 

  45. David FJ, Baranek GT, Giuliani CA, Mercer VS, Poe MD, Thorpe DE. A pilot study: coordination of precision grip in children and adolescents with high functioning autism. Pediatr Phys Ther. 2009;21(2):205.

    Article  Google Scholar 

  46. Dawson G. Early behavioral intervention, brain plasticity, and the prevention of autism spectrum disorder. Dev Psychopathol. 2008;20(3):775–803.

    Article  Google Scholar 

  47. Dawson G, Sapiro G. Potential for digital behavioral measurement tools to transform the detection and diagnosis of autism spectrum disorder. JAMA pediatrics. 2019.

  48. Dawson G, Toth K, Abbott R, Osterling J, Munson J, Estes A, Liaw J. Early social attention impairments in autism: social orienting, joint attention, and attention to distress. Dev Psychol. 2004;40(2):271.

    Article  Google Scholar 

  49. de Belen RAJ, Bednarz T, Sowmya A, Del Favero D. Computer vision in autism spectrum disorder research: a systematic review of published studies from 2009 to 2019. Transl Psychiatry. 2020;10(1):1–20.

    Article  Google Scholar 

  50. Delaherche E, Chetouani M, Bigouret F, Xavier J, Plaza M, Cohen D. Assessment of the communicative and coordination skills of children with autism spectrum disorders and typically developing children using social signal processing. Res Autism Spectr Disord. 2013;7(6):741–56.

    Article  Google Scholar 

  51. Di Martino A, O’connor D, Chen B, Alaerts K, Anderson JS, Assaf M, Balsters JH, Baxter L, Beggiato A, Bernaerts S, et al. Enhancing studies of the connectome in autism using the autism brain imaging data exchange ii. Sci Data. 2017;4(1):1–15.

    Article  Google Scholar 

  52. Doi H. Digital phenotyping of autism spectrum disorders based on color information: brief review and opinion. Artificial Life and Robotics. 2020;25(3):329–34.

    Article  Google Scholar 

  53. Downey R, Rapport MJK. Motor activity in children with autism: a review of current literature. Pediatr Phys Ther. 2012;24(1):2–20.

    Article  Google Scholar 

  54. Dziuk M, Larson JG, Apostu A, Mahone EM, Denckla MB, Mostofsky SH. Dyspraxia in autism: association with motor, social, and communicative deficits. Dev Med Child Neurol. 2007;49(10):734–9.

    Article  Google Scholar 

  55. Egger HL, Dawson G, Hashemi J, Carpenter KL, Espinosa S, Campbell K, Brotkin S, Schaich-Borg J, Qiu Q, Tepper M, et al. Automatic emotion and attention analysis of young children at home: a researchkit autism feasibility study. NPJ Digital Medicine. 2018;1(1):20.

  56. Eggleston JD, Harry JR, Hickman RA, Dufek JS. Analysis of gait symmetry during over-ground walking in children with autism spectrum disorder. Gait Posture. 2017;55:162–6.

    Article  Google Scholar 

  57. Einspieler C, Sigafoos J, Bartl-Pokorny KD, Landa R, Marschik PB, Bölte S. Highlighting the first 5 months of life: General movements in infants later diagnosed with autism spectrum disorder or rett syndrome. Res Autism Spectr Disord. 2014;8(3):286–91.

    Article  Google Scholar 

  58. El Kaliouby R, Picard R, Baron-Cohen S. Affective computing and autism. Ann N Y Acad Sci. 2006;1093(1):228–48.

    Article  Google Scholar 

  59. Eskofier BM, Lee SI, Daneault JF, Golabchi FN, Ferreira-Carvalho G, Vergara-Diaz G, Sapienza S, Costante G, Klucken J, Kautz T, et al. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for parkinson’s disease assessment. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. 2016. pp.655–658.

  60. Ferreri F, Bourla A, Mouchabac S, Karila L. e-addictology: an overview of new technologies for assessing and intervening in addictive behaviors. Front Psych. 2018;9:51.

    Article  Google Scholar 

  61. Finnegan E, Accardo AL. Written expression in individuals with autism spectrum disorder: A meta-analysis. J Autism Dev Disord. 2018;48(3):868–82.

    Article  Google Scholar 

  62. Fitzpatrick P, Frazier JA, Cochran DM, Mitchell T, Coleman C, Schmidt R. Impairments of social motor synchrony evident in autism spectrum disorder. Front Psychol. 2016;7:1323.

    Article  Google Scholar 

  63. Fleury A, Kushki A, Tanel N, Anagnostou E, Chau T. Statistical persistence and timing characteristics of repetitive circle drawing in children with asd. Dev Neurorehabil. 2013;16(4):245–54.

    Article  Google Scholar 

  64. Fombonne E. Epidemiology of pervasive developmental disorders. Pediatr Res. 2009;65(6):591.

    Article  Google Scholar 

  65. Fournier KA, Hass CJ, Naik SK, Lodha N, Cauraugh JH. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J Autism Dev Disord. 2010;40(10):1227–40.

    Article  Google Scholar 

  66. Fulceri F, Tonacci A, Lucaferro A, Apicella F, Narzisi A, Vincenti G, Muratori F, Contaldo A. Interpersonal motor coordination during joint actions in children with and without autism spectrum disorder: The role of motor information. Res Dev Disabil. 2018;80:13–23.

    Article  Google Scholar 

  67. Gargot T, Asselborn T, Pellerin H, Zammouri I, M.Anzalone S, Casteran L, Johal W, Dillenbourg P, Cohen D, Jolly C. Acquisition of handwriting in children with and without dysgraphia: A computational approach. Plos One. 2020;15(9):e0237575.

  68. Gargot T, Asselborn T, Zammouri I, Brunelle J, Johal W, Dillenbourg P, Archambault D, Chetouani M, Cohen D, Anzalone SM. it is not the robot who learns, it is me treating severe dysgraphia using child-robot interaction. Front Psychol. 2021;12, 5.

  69. Gargot T, Recht S, GuneysuOzgur A. The imitation game: A perception-action loop based, imitation activity with tangible robots for children with asd, accessible on https://ecnp33-ecnp.ipostersessions.com/default.aspx?s=1b-ab-90-d2-c6-b9-b3-3c-45-af-18-21-1c-90-e7-7d#. In The 33th European Congress of Neuro Psychopharmacology (ECNP). 2020.

  70. Gessaroli E, Santelli E, di Pellegrino G, Frassinetti F. Personal space regulation in childhood autism spectrum disorders. PLoS ONE. 2013;8(9).

    Article  Google Scholar 

  71. Gomez-Marin A, Paton JJ, Kampff AR, Costa RM, Mainen ZF. Big behavioral data: psychology, ethology and the foundations of neuroscience. Nat Neurosci. 2014;17(11):1455.

    Article  Google Scholar 

  72. Gonçalves N, Rodrigues JL, Costa S, Soares F. Automatic detection of stereotyped hand flapping movements: two different approaches. In 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication. IEEE. .2012. pp.392–397.

  73. Gonçalves N, Rodrigues JL, Costa S, Soares F. Preliminary study on determining stereotypical motor movements. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE. 2012. pp.1598–1601.

  74. Goodwin MS, Haghighi M, Tang Q, Akcakaya M, Erdogmus D, Intille S. Moving towards a real-time system for automatically recognizing stereotypical motor movements in individuals on the autism spectrum using wireless accelerometry. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, ACM. 2014. pp.861–872.

  75. Goodwin MS, Intille SS, Albinali F, Velicer WF. Automated detection of stereotypical motor movements. J Autism Dev Disord. 2011;41(6):770–82.

    Article  Google Scholar 

  76. Gowen E, Hamilton A. Motor abilities in autism: a review using a computational context. J Autism Dev Disord. 2013;43(2):323–44.

    Article  Google Scholar 

  77. Green D, Charman T, Pickles A, Chandler S, Loucas T, Simonoff E, Baird G. Impairment in movement skills of children with autistic spectrum disorders. Dev Med Child Neurol. 2009;51(4):311–6.

    Article  Google Scholar 

  78. Grossard C, Grynspan O, Serret S, Jouen A-L, Bailly K, Cohen D. Serious games to teach social interactions and emotions to individuals with autism spectrum disorders (asd). Comput Educ. 2017;113:195–211.

    Article  Google Scholar 

  79. Guedjou H, Boucenna S, Xavier J, Cohen D, Chetouani M. The influence of individual social traits on robot learning in a human-robot interaction. In 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE. 2017. pp.256–262.

  80. Guinchat V, Chamak B, Bonniau B, Bodeau N, Perisse D, Cohen D, Danion A. Very early signs of autism reported by parents include many concerns not specific to autism criteria. Res Autism Spectr Disord. 2012;6(2):589–601.

    Article  Google Scholar 

  81. Haas RH, Townsend J, Courchesne E, Lincoln AJ, Schreibman L, Yeung-Courchesne R. Neurologic abnormalities in infantile autism. J Child Neurol. 1996;11(2):84–92.

    Article  Google Scholar 

  82. Hasan C, Jailani R, Tahir NM, Yassin IM, Rizman ZI. Automated classification of autism spectrum disorders gait patterns using discriminant analysis based on kinematic and kinetic gait features. Journal of Applied Environmental and Biological Sciences. 2017;7(1):150–6.

    Google Scholar 

  83. Hasan CZC, Jailani R, Tahir NM, Ilias S. The analysis of three-dimensional ground reaction forces during gait in children with autism spectrum disorders. Res Dev Disabil. 2017;66:55–63.

    Article  Google Scholar 

  84. Hashemi J, Tepper M, Vallin Spina T, Esler A, Morellas V, Papanikolopoulos N, Egger H, Dawson G, Sapiro G. Computer vision tools for low-cost and noninvasive measurement of autism-related behaviors in infants. Autism Res Treat. 2014.

  85. Heinsfeld AS, Franco AR, Craddock RC, Buchweitz A, Meneguzzi F. Identification of autism spectrum disorder using deep learning and the abide dataset. NeuroImage: Clinical. 2018;17:16–23.

  86. Henderson SE, Sugden DA, Barnett AL. Movement assessment battery for children-2. Harcourt Assessment. 2007.

  87. Higuchi K, Matsuda S, Kamikubo R, Enomoto T, Sugano Y, Yamamoto J, Sato Y. Visualizing gaze direction to support video coding of social attention for children with autism spectrum disorder. In 23rd International Conference on Intelligent User Interfaces, ACM. 2018. pp.571–582.

  88. Howlin P, Goode S, Hutton J, Rutter M. Adult outcome for children with autism. J Child Psychol Psychiatry. 2004;45(2):212–29.

    Article  Google Scholar 

  89. Huckvale K, Venkatesh S, Christensen H. Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. NPJ Digital Medicine. 2019;2(1):1–11.

    Article  Google Scholar 

  90. Idei H, Murata S, Chen Y, Yamashita Y, Tani J, Ogata T. Reduced behavioral flexibility by aberrant sensory precision in autism spectrum disorder: A neurorobotics experiment. In 2017 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), IEEE. 2017. pp.271–276.

  91. Ieracitano C, Mammone N, Hussain A, Morabito FC. A novel multi-modal machine learning based approach for automatic classification of eeg recordings in dementia. Neural Netw. 2020;123:176–90.

    Article  Google Scholar 

  92. Ilias S, Tahir NM, Jailani R, Hasan CZC. Classification of autism children gait patterns using neural network and support vector machine. In Computer Applications & Industrial Electronics (ISCAIE), 2016 IEEE Symposium on, IEEE. 2016. pp.52–56.

  93. Insel TR. Digital phenotyping: technology for a new science of behavior. JAMA. 2017;318(13):1215–6.

    Article  Google Scholar 

  94. Iverson JM, Wozniak RH. Variation in vocal-motor development in infant siblings of children with autism. J Autism Dev Disord. 2007;37(1):158–70.

    Article  Google Scholar 

  95. Jacobson NC, Weingarden H, Wilhelm S. Using digital phenotyping to accurately detect depression severity. J Nerv Ment Dis. 2019;207(10):893–6.

    Article  Google Scholar 

  96. Jasmin E, Couture M, McKinley P, Reid G, Fombonne E, Gisel E. Sensori-motor and daily living skills of preschool children with autism spectrum disorders. J Autism Dev Disord. 2009;39(2):231–41.

    Article  Google Scholar 

  97. Johnson AL, Gillis JM, Romanczyk RG. A brief report: Quantifying and correlating social behaviors in children with autism spectrum disorders. Res Autism Spectr Disord. 2012;6(3):1053–60.

    Article  Google Scholar 

  98. Jouaiti M, Henaff P. Robot-based motor rehabilitation in autism: A systematic review. Int J Soc Robot. 2019, 1–12.

  99. Kaiser M, Albaret J, Cantell M. Assessment of the participation of the children with a developmental coordination disorder (dcd): A review of the questionnaires addressed to parents and/or teachers. J Child Adolesc Behav. 2015.

  100. Kanner L, et al. Autistic disturbances of affective contact. Nerv Child. 1943;2(3):217–50.

    Google Scholar 

  101. Kennedy DP, Adolphs R. Violations of personal space by individuals with autism spectrum disorder. PloS One. 2014;9(8):e103369.

  102. Khan NA, Sawand MA, Qadeer M, Owais A, Junaid S, Shahnawaz P. Autism detection using computer vision. International Journal of Computer Science and Network Security (IJCSNS). 2017;17(4):256.

    Google Scholar 

  103. Kindregan D, Gallagher L, Gormley J. Gait deviations in children with autism spectrum disorders: a review. Autism research and treatment. 2015.

  104. Kojovic N, Ben Hadid L, Franchini M, Schaer M. Sensory processing issues and their association with social difficulties in children with autism spectrum disorders. J Clin Med. 2019;8(10):1508.

    Article  Google Scholar 

  105. Koppe G, Meyer-Lindenberg A, Durstewitz D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology. 2021;46(1):176–90.

    Article  Google Scholar 

  106. Kowallik AE, Schweinberger SR. Sensor-based technology for social information processing in autism: A review. Sensors. 2019;19(21):4787.

    Article  Google Scholar 

  107. Le Menn-Tripi C, Vachaud A, Defas N, Malvy J, Roux S, Bonnet-Brilhault F. Lévaluation sensori-psychomotrice dans lautisme: un nouvel outil daide au diagnostic fonctionnel. L’Encéphale. 2019;45(4):312–9.

    Article  Google Scholar 

  108. Liang Y, Zheng X, Zeng DD. A survey on big data-driven digital phenotyping of mental health. Information Fusion. 2019;52:290–307.

    Article  Google Scholar 

  109. Lim YH, Partridge K, Girdler S, Morris SL. Standing postural control in individuals with autism spectrum disorder: Systematic review and meta-analysis. J Autism Dev Disord. 2017;47(7):2238–53.

    Article  Google Scholar 

  110. Liu T, Breslin CM. Fine and gross motor performance of the mabc-2 by children with autism spectrum disorder and typically developing children. Res Autism Spectr Disord. 2013;7(10):1244–9.

    Article  Google Scholar 

  111. Longuet S, Ferrel-Chapus C, Orêve MJ, Chamot JM, Vernazza-Martin S. Emotion, intent and voluntary movement in children with autism. an example: the goal directed locomotion. J Autism Dev Disord. 2012;42(7):1446–1458.

  112. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24(5):659–85.

    Article  Google Scholar 

  113. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, Park BY, Snyder NW, Schendel D, Volk H, et al. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health. 2017;38:81–102.

    Article  Google Scholar 

  114. Maestro S, Muratori F, Barbieri F, Casella C, Cattaneo V, Cavallaro MC, Cesari A, Milone A, Rizzo L, Viglione V, et al. Early behavioral development in autistic children: the first 2 years of life through home movies. Psychopathology. 2001;34(3):147–52.

    Article  Google Scholar 

  115. Maestro S, Muratori F, Cavallaro MC, Pei F, Stern D, Golse B, Palacio-Espasa F. Attentional skills during the first 6 months of age in autism spectrum disorder. J Am Acad Child Adolesc Psychiatry. 2002;41(10):1239–45.

    Article  Google Scholar 

  116. Maestro S, Muratori F, Cesari A, Pecini C, Apicella F, Stern D. A view to regressive autism through home movies. is early development really normal? Acta Psychiatr Scand. 2006;113(1):68–72.

  117. Mahdhaoui A, Chetouani M, Cassel RS, Saint-Georges C, Parlato E, Laznik MC, Apicella F, Muratori F, Maestro S, Cohen D. Computerized home video detection for motherese may help to study impaired interaction between infants who become autistic and their parents. Int J Methods Psychiatr Res. 2011;20(1):e6–18.

    Article  Google Scholar 

  118. Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cogn Comput. 2021;13(1):1–33.

    Article  Google Scholar 

  119. Mammone N, Ieracitano C, Morabito FC. A deep cnn approach to decode motor preparation of upper limbs from time-frequency maps of eeg signals at source level. Neural Netw. 2020;124:357–72.

    Article  Google Scholar 

  120. Mari M, Castiello U, Marks D, Marraffa C, Prior M. The reach-to-grasp movement in children with autism spectrum disorder. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 2003;358(1430):393–403.

    Article  Google Scholar 

  121. Marko MK, Crocetti D, Hulst T, Donchin O, Shadmehr R, Mostofsky SH. Behavioural and neural basis of anomalous motor learning in children with autism. Brain. 2015;138(3):784–97.

    Article  Google Scholar 

  122. Marsh KL, Isenhower RW, Richardson MJ, Helt M, Verbalis AD, Schmidt R, Fein D. Autism and social disconnection in interpersonal rocking. Front Integr Neurosci. 2013;7:4.

    Article  Google Scholar 

  123. Martin KB, Hammal Z, Ren G, Cohn JF, Cassell J, Ogihara M, Britton JC, Gutierrez A, Messinger DS. Objective measurement of head movement differences in children with and without autism spectrum disorder. Mol Autism. 2018;9(1):14.

    Article  Google Scholar 

  124. Matson JL, Nebel-Schwalm MS. Comorbid psychopathology with autism spectrum disorder in children: An overview. Res Dev Disabil. 2007;28(4):341–52.

    Article  Google Scholar 

  125. McEachin JJ, Smith T, Ivar Lovaas O. Long-term outcome for children with autism who received early intensive behavioral treatment. Am J Ment Retard. 1993;97:359–359.

    Google Scholar 

  126. Memari A, Ghaheri B, Ziaee V, Kordi R, Hafizi S, Moshayedi P. Physical activity in children and adolescents with autism assessed by triaxial accelerometry. Pediatr Obes. 2013;8(2):150–8.

    Article  Google Scholar 

  127. Min CH, Tewfik AH. Automatic characterization and detection of behavioral patterns using linear predictive coding of accelerometer sensor data. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, IEEE. 2010. pp.220–223.

  128. Ming X, Brimacombe M, Wagner GC. Prevalence of motor impairment in autism spectrum disorders. Brain Develop. 2007;29(9):565–70.

    Article  Google Scholar 

  129. Mir WA, Nissar I, et al. Contribution of application of deep learning approaches on biomedical data in the diagnosis of neurological disorders: A review on recent findings. In International Conference on Computational Intelligence, Security and Internet of Things, Springer. 2019. pp.87–97.

  130. Miyahara M, Tsujii M, Hori M, Nakanishi K, Kageyama H, Sugiyama T. Brief report: motor incoordination in children with asperger syndrome and learning disabilities. J Autism Dev Disord. 1997;27(5):595–603.

    Article  Google Scholar 

  131. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the prisma statement. Ann Intern Med. 2009;151(4):264–9.

    Article  Google Scholar 

  132. Moore M, Evans V, Hanvey G, Johnson C. Assessment of sleep in children with autism spectrum disorder. Children. 2017;4(8):72.

    Article  Google Scholar 

  133. Munafò MR, Nosek BA, Bishop DV, Button KS, Chambers CD, Du Sert NP, Simonsohn U, Wagenmakers EJ, Ware JJ, Ioannidis JP. A manifesto for reproducible science. Nat Hum Behav. 2017;1(1):0021.

    Article  Google Scholar 

  134. Muñoz-Organero M, Powell L, Heller B, Harpin V, Parker J. Automatic extraction and detection of characteristic movement patterns in children with adhd based on a convolutional neural network (cnn) and acceleration images. Sensors. 2018;18(11):3924.

    Article  Google Scholar 

  135. Niehaus K, editor. MOCO ’17: Proceedings of the 4th International Conference on Movement Computing New York. NY, USA: ACM; 2017.

    Google Scholar 

  136. Nielsen JA, Zielinski BA, Fletcher PT, Alexander AL, Lange N, Bigler ED, Lainhart JE, Anderson JS. Multisite functional connectivity mri classification of autism: Abide results. Front Hum Neurosci. 2013;7:599.

    Article  Google Scholar 

  137. Nobile M, Perego P, Piccinini L, Mani E, Rossi A, Bellina M, Molteni M. Further evidence of complex motor dysfunction in drug naive children with autism using automatic motion analysis of gait. Autism. 2011;15(3):263–83.

    Article  Google Scholar 

  138. Noor MBT, Zenia NZ, Kaiser MS, Al Mamun S, Mahmud M. Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of alzheimer’s disease, parkinson’s disease and schizophrenia. Brain Inform. 2020;7(1):1–21.

    Article  Google Scholar 

  139. Noris B, Nobile M, Piccini L, Molteni M, Keller F, Billard A. Gait analysis of autistic children with echo state networks. In NIPS 06, no.LASA-POSTER-2007-001. 2006.

  140. Organization WH, et al. Icd-11 (mortality and morbidity statistics). Retrieved June 22 2018.

  141. Orsolini L, Fiorani M, Volpe U. Digital phenotyping in bipolar disorder: Which integration with clinical endophenotypes and biomarkers? Int J Mol Sci. 2020;21(20):7684.

    Article  Google Scholar 

  142. Ozonoff S, Young GS, Goldring S, Greiss-Hess L, Herrera AM, Steele J, Macari S, Hepburn S, Rogers SJ. Gross motor development, movement abnormalities, and early identification of autism. J Autism Dev Disord. 2008;38(4):644–56.

    Article  Google Scholar 

  143. Palomo R, BelinchÓn M, Ozonoff S. Autism and family home movies: a comprehensive review. J Dev Behav Pediatr. 2006;27(2):S59–68.

    Article  Google Scholar 

  144. Pan C-Y, Frey GC. Physical activity patterns in youth with autism spectrum disorders. J Autism Dev Disord. 2006;36(5):597.

    Article  Google Scholar 

  145. Papagiannopoulou EA, Chitty KM, Hermens DF, Hickie IB, Lagopoulos J. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Soc Neurosci. 2014;9(6):610–32.

    Google Scholar 

  146. Paquet A, Golse B, Girard M, Olliac B, Vaivre-Douret L. Laterality and lateralization in autism spectrum disorder, using a standardized neuro-psychomotor assessment. Dev Neuropsychol. 2017;42(1):39–54.

    Article  Google Scholar 

  147. Paquet A, Olliac B, Golse B, Vaivre-Douret L. Evaluation of neuromuscular tone phenotypes in children with autism spectrum disorder: An exploratory study. Neurophysiologie Clinique/Clinical Neurophysiology. 2017;47(4):261–8.

    Article  Google Scholar 

  148. Paquet A, Olliac B, Golse B, Vaivre-Douret L. Nature of motor impairments in autism spectrum disorder: A comparison with developmental coordination disorder. J Clin Exp Neuropsychol. 2018;1–14.

  149. Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G. Autism and social robotics: A systematic review. Autism Res. 2016;9(2):165–83.

    Article  Google Scholar 

  150. Perego P, Forti S, Crippa A, Valli A, Reni G. Reach and throw movement analysis with support vector machines in early diagnosis of autism. In Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE. 2009. pp.2555–2558.

  151. Prechtl HF, Einspieler C, Cioni G, Bos AF, Ferrari F, Sontheimer D. An early marker for neurological deficits after perinatal brain lesions. The Lancet. 1997;349(9062):1361–3.

    Article  Google Scholar 

  152. Preslar J, Kushner HI, Marino L, Pearce B. Autism, lateralisation, and handedness: a review of the literature and meta-analysis. Laterality: Asymmetries of Body, Brain and Cognition. 2014;19(1):64–95.

  153. Provost B, Lopez BR, Heimerl S. A comparison of motor delays in young children: autism spectrum disorder, developmental delay, and developmental concerns. J Autism Dev Disord. 2007;37(2):321–8.

    Article  Google Scholar 

  154. Rad NM, Furlanello C. Applying deep learning to stereotypical motor movement detection in autism spectrum disorders. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), IEEE. 2016. pp.1235–1242.

  155. Rad NM, Kia SM, Zarbo C, Jurman G, Venuti P, Furlanello C. Stereotypical motor movement detection in dynamic feature space. In 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW), IEEE. 2016. pp.487–494.

  156. Rad NM, Kia SM, Zarbo C, van Laarhoven T, Jurman G, Venuti P, Marchiori E, Furlanello C. Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders. Signal Process. 2018;144:180–91.

    Article  Google Scholar 

  157. Reich S, Zhang D, Kulvicius T, Bölte S, Nielsen-Saines K, Pokorny FB, Peharz R, Poustka L, Wörgötter F, Einspieler C, et al. Novel ai driven approach to classify infant motor functions. Sci Rep. 2021;11(1):1–13.

    Article  Google Scholar 

  158. Reiersen AM. Early identification of autism spectrum disorder: Is diagnosis by age 3 a reasonable goal? J Am Acad Child Adolesc Psychiatry. 2017;56(4):284–5.

    Article  Google Scholar 

  159. Rinehart NJ, Tonge BJ, Bradshaw JL, Iansek R, Enticott PG, McGinley J. Gait function in high-functioning autism and asperger’s disorder. Eur Child Adolesc Psychiatry. 2006;15(5):256–64.

    Article  Google Scholar 

  160. Rinehart NJ, Tonge BJ, Iansek R, McGinley J, Brereton AV, Enticott PG, Bradshaw JL. Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol. 2006;48(10):819–24.

    Article  Google Scholar 

  161. Rogers SJ, Williams JH. Imitation and the social mind: Autism and typical development. Guilford Press. 2006.

  162. Ruan M, Webster PJ, Li X, Wang S. Deep neural network reveals the world of autism from a first-person perspective. Autism Res. 2021.

  163. Sacrey LAR, Germani T, Bryson SE, Zwaigenbaum L. Reaching and grasping in autism spectrum disorder: a review of recent literature. Front Neurol. 2014;5:6.

    Article  Google Scholar 

  164. Saint-Georges C, Cassel RS, Cohen D, Chetouani M, Laznik M-C, Maestro S, Muratori F. What studies of family home movies can teach us about autistic infants: A literature review. Res Autism Spectr Disord. 2010;4(3):355–66.

    Article  Google Scholar 

  165. Saint-Georges C, Guinchat V, Chamak B, Apicella F, Muratori F, Cohen D. Signes précoces dautisme: doù vient-on? où va-t-on? Neuropsychiatrie de l’Enfance et de l’Adolescence. 2013;61(7–8):400–8.

    Article  Google Scholar 

  166. Saint-Georges C, Mahdhaoui A, Chetouani M, Cassel RS, Laznik M-C, Apicella F, Muratori P, Maestro S, Muratori F, Cohen D. Do parents recognize autistic deviant behavior long before diagnosis? taking into account interaction using computational methods. PLoS ONE. 2011;6(7).

    Article  Google Scholar 

  167. Sapiro G, Hashemi J, Dawson G. Computer vision and behavioral phenotyping: an autism case study. Current Opinion in Biomedical Engineering. 2019;9:14–20.

    Article  Google Scholar 

  168. Scassellati B, Boccanfuso L, Huang CM, Mademtzi M, Qin M, Salomons N, Ventola P, Shic F. Improving social skills in children with asd using a long-term, in-home social robot. Sci Robot. 2018;3(21):eaat7544.

  169. Serdarevic F, Ghassabian A, van Batenburg-Eddes T, White T, Blanken LM, Jaddoe VW, Verhulst FC, Tiemeier H. Infant muscle tone and childhood autistic traits: A longitudinal study in the general population. Autism Res. 2017;10(5):757–68.

    Article  Google Scholar 

  170. Shahamiri SR, Thabtah F. Autism ai: a new autism screening system based on artificial intelligence. Cogn Comput. 2020;12(4):766–77.

    Article  Google Scholar 

  171. Shetreat-Klein M, Shinnar S, Rapin I. Abnormalities of joint mobility and gait in children with autism spectrum disorders. Brain Develop. 2014;36(2):91–6.

    Article  Google Scholar 

  172. Silva N, Zhang D, Kulvicius T, Gail A, Barreiros C, Lindstaedt S, Kraft M, Bölte S, Poustka L, Nielsen-Saines K, et al. The future of general movement assessment: The role of computer vision and machine learning-a scoping review. Res Dev Disabil. 2021;110.

    Article  Google Scholar 

  173. Simel DL, Rennie D. The rational clinical examination: evidence-based clinical diagnosis. McGraw Hill Professional. 2008.

  174. Sparaci L, Formica D, Lasorsa FR, Mazzone L, Valeri G, Vicari S. Untrivial pursuit: measuring motor procedures learning in children with autism. Autism Res. 2015;8(4):398–411.

    Article  Google Scholar 

  175. Spinazze P, Rykov Y, Bottle A, Car J. Digital phenotyping for assessment and prediction of mental health outcomes: a scoping review protocol. BMJ Open. 2019;9(12).

    Article  Google Scholar 

  176. Staples KL, Reid G. Fundamental movement skills and autism spectrum disorders. J Autism Dev Disord. 2010;40(2):209–17.

    Article  Google Scholar 

  177. Steiner H, Kertesz Z. Effect of therapeutic riding on gait cycle parameters and behavioural skills of autistic children. In 2012 IEEE 3rd International Conference on Cognitive Infocommunications (CogInfoCom), IEEE. 2012. pp.109–113.

  178. Steiner H, Kertesz Z. Effects of therapeutic horse riding on gait cycle parameters and some aspects of behavior of children with autism. Acta Physiologica Hungarica. 2015;102(3):324–35.

    Article  Google Scholar 

  179. Stel M, van den Heuvel C, Smeets RC. Facial feedback mechanisms in autistic spectrum disorders. J Autism Dev Disord. 2008;38(7):1250–8.

    Article  Google Scholar 

  180. Stins JF, Emck C. Balance performance in autism: a brief overview. Front Psychol. 2018;9.

  181. Suresh S. Nursing research and statistics. Elsevier Health Sciences. 2014.

  182. Takamuku S, Forbes PA, Hamilton AF, Gomi, H. Typical use of inverse dynamics in perceiving motion in autistic adults: Exploring computational principles of perception and action. Autism Res. 2018;11(7):1062–1075.

  183. Teitelbaum P, Teitelbaum O, Nye J, Fryman J, Maurer RG. Movement analysis in infancy may be useful for early diagnosis of autism. Proc Natl Acad Sci. 1998;95(23):13982–7.

    Article  Google Scholar 

  184. Tordjman S, Cohen D, Coulon N, Anderson G, Botbol M, Roubertoux P. Reprint of reframing autism as a behavioral syndrome and not a specific mental disorder: Perspectives from a literature review. Neurosci Biobehav Rev. 2018.

  185. Torres EB, Brincker M, Isenhower RW III, Yanovich P, Stigler KA, Nurnberger JI Jr, Metaxas DN, José JV. Autism: the micro-movement perspective. Front Integr Neurosci. 2013;7:32.

    Article  Google Scholar 

  186. Torres EB, Denisova K. Motor noise is rich signal in autism research and pharmacological treatments. Sci Rep. 2016;6:37422.

    Article  Google Scholar 

  187. Torres EB, Nguyen J, Mistry S, Whyatt C, Kalampratsidou V, Kolevzon A. Characterization of the statistical signatures of micro-movements underlying natural gait patterns in children with phelan mcdermid syndrome: towards precision-phenotyping of behavior in asd. Front Integr Neurosci. 2016;10:22.

    Article  Google Scholar 

  188. Torres EB, Yanovich P, Metaxas DN. Give spontaneity and self-discovery a chance in asd: spontaneous peripheral limb variability as a proxy to evoke centrally driven intentional acts. Front Integr Neurosci. 2013;7:46.

    Article  Google Scholar 

  189. Travers BG, Powell PS, Klinger LG, Klinger MR. Motor difficulties in autism spectrum disorder: linking symptom severity and postural stability. J Autism Dev Disord. 2013;43(7):1568–83.

    Article  Google Scholar 

  190. Trevarthen C, Delafield-Butt JT. Autism as a developmental disorder in intentional movement and affective engagement. Front Integr Neurosci. 2013;7:49.

    Article  Google Scholar 

  191. Triantafyllidis AK, Tsanas A. Applications of machine learning in real-life digital health interventions: review of the literature. J Med Internet Res. 2019;21(4):e12286.

  192. Tsuji A, Enomoto T, Matsuda S, Yamamoto J, Suzuki K. Modeling and quantitative measurement method of the tripartite interpersonal distance dynamics for children with asd. In International Conference on Computers Helping People with Special Needs, Springer. 2018. pp.523–526.

  193. Vaivre-Douret L. Batterie d’évaluations des fonctions neuro-psychomotrices de l’enfant. Le Carnet PSY. 2007;2:27–27.

    Article  Google Scholar 

  194. van Der Linde BW, van Netten JJ, Otten BE, Postema K, Geuze RH, Schoemaker MM. Psychometric properties of the dcddaily-q: A new parental questionnaire on children’s performance in activities of daily living. Res Dev Disabil. 2014;35(7):1711–9.

    Article  Google Scholar 

  195. Varni G, Avril M, Usta A, Chetouani M. Syncpy: a unified open-source analytic library for synchrony. In Proceedings of the 1st Workshop on Modeling INTERPERsonal SynchrONy And infLuence, ACM. 2015. pp.41–47.

  196. Verma P, Lahiri U. Deficits in handwriting of individuals with autism: a review on identification and intervention approaches. Review Journal of Autism and Developmental Disorders. 2021;1–21.

  197. Vernazza-Martin S, Martin N, Vernazza A, Lepellec-Muller A, Rufo M, Massion J, Assaiante C. Goal directed locomotion and balance control in autistic children. J Autism Dev Disord. 2005;35(1):91–102.

    Article  Google Scholar 

  198. Vilensky JA, Damasio AR, Maurer RG. Gait disturbances in patients with autistic behavior: a preliminary study. Arch Neurol. 1981;38(10):646–9.

    Article  Google Scholar 

  199. Weber D. Toe-walking in children with early childhood autism. Acta Paedopsychiatrica: Int J Child Adolesc Psychiatry. 1978.

  200. Wedyan M, Al-Jumaily A. Early diagnosis autism based on upper limb motor coordination in high risk subjects for autism. In 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), IEEE. 2016. pp.13–18.

  201. Wedyan M, Al-Jumaily A. An investigation of upper limb motor task based discriminate for high risk autism. In 2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), IEEE. 2017. pp.1–6.

  202. Wiggs L, Stores G. Sleep patterns and sleep disorders in children with autistic spectrum disorders: insights using parent report and actigraphy. Dev Med Child Neurol. 2004;46(6):372–80.

    Article  Google Scholar 

  203. Wilson NJ, Lee HC, Vaz S, Vindin P, Cordier R. Scoping review of the driving behaviour of and driver training programs for people on the autism spectrum. Behav Neurol. 2018.

  204. Wolpert DM, Doya K, Kawato M. A unifying computational framework for motor control and social interaction. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 2003;358(1431):593–602.

  205. Wozniak RH, Leezenbaum NB, Northrup JB, West KL, Iverson JM. The development of autism spectrum disorders: variability and causal complexity. Wiley Interdisciplinary Reviews: Cognitive Science. 2017;8(1–2).

    Google Scholar 

  206. Xavier J, Gauthier S, Cohen D, Zaoui M, Chetouani M, Villa F, Berthoz A, Anzalone SM. Interpersonal synchronization, motor coordination and control are impaired during a dynamic imitation task in children with autism spectrum disorder. Front Psychol. 2018;9:1467.

    Article  Google Scholar 

  207. Xavier J, Guedjou H, Anzalone S, Boucenna S, Guigon E, Chetouani M, Cohen D. Toward a motor signature in autism: Studies from human-machine interaction. L’Encéphale. 2019;45(2):182–7.

    Article  Google Scholar 

  208. Zemouri R, Zerhouni N, Racoceanu D. Deep learning in the biomedical applications: Recent and future status. Appl Sci. 2019;9(8):1526.

    Article  Google Scholar 

  209. Zhang W, Groen W, Mennes M, Greven C, Buitelaar J, Rommelse N. Revisiting subcortical brain volume correlates of autism in the abide dataset: effects of age and sex. Psychol Med. 2018;48(4):654.

    Article  Google Scholar 

  210. Zhou H-Y, Cai X-L, Weigl M, Bang P, Cheung EF, Chan RC. Multisensory temporal binding window in autism spectrum disorders and schizophrenia spectrum disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;86:66–76.

    Article  Google Scholar 

Download references

Funding

The authors thank the Assistance Publique Hôpitaux de Paris, the Paris 8 University, the bilateral French-Swiss ANR-FNC project iReCheck (ANR-19-CE19-0029 - FNS 200021E_189475/1) funding and the Centre National de la Recherche Scientifique (CNRS) for financial support. We would like to thank the Swiss National Science Foundation for supporting this project through the National Center of Competence in Research Robotics. Part of this work is also supported by the LiLLaB (Living & Learning Lab Neuro-Development) financed by the Ministry of Higher Education, Research and Innovation in the context the French National Autism Strategy.

Author information

Authors and Affiliations

Authors

Contributions

TG performed a first screening, selected the keywords, screened and selected the articles, designed the figures and wrote the first draft; DC proposed the general idea and wrote the first draft; SA designed the figures and revised the first draft; DA, MC and WJ revised the first draft; all authors read and approved the final manuscript.

Corresponding author

Correspondence to Thomas Gargot.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no competing interests

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gargot, T., Archambault, D., Chetouani, M. et al. Automatic Assessment of Motor Impairments in Autism Spectrum Disorders: A Systematic Review. Cogn Comput 14, 624–659 (2022). https://doi.org/10.1007/s12559-021-09940-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09940-8

Keywords

Navigation