Skip to main content

Advertisement

Log in

Some Information Measures Based on Centroid, Orthocenter, Circumcenter and Incenter Points of Transformed Triangular Fuzzy Numbers and their Applications

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Cognitive computing has deep extents, which embrace different features of cognition. In the decision-making process, multi-criteria decision making is credited as a cognitive-based human action. However, to treat and unite the information from several resources, the most vital stage is data collection. Intuitionistic fuzzy set (IFS) is one of the most robust and trustworthy tools to accomplish the imprecise information with the help of the membership degrees. In addition to this, an information measure plays an essential role in treating uncertain information to reach the final decision based on the degree of the separation between the pairs of the numbers. Motivated by these, this paper aims to present the novel information measures using four different centers namely centroid, orthocenter, circumcenter and incenter under the IFS environment to address the cognitive-based human decision-making problems. The present work is divided into three folds. The first fold is to propose a technique of transforming intuitionistic fuzzy values into general triangular fuzzy numbers (TFNs). The right-angled and isosceles TFNs are special cases of the proposed transformation technique. The second fold is to develop distance and similarity measures using four different centers namely centroid, orthocenter, circumcenter and incenter of transformed TFNs. The basic axioms of the proposed measures are investigated in detail. The third fold is to justify superiority and validity of the proposed measures. The effectiveness of the developed measures is examined by applying it in clustering as well as the pattern recognition problems, and their results are correlated with some prevailing studies. Additionally, a clustering technique is discussed based on the stated measures to classify the objects. A detailed comparative analysis is done with some of the existing measures and concludes that several existing measures fail to discriminate the results under the different instances such as division by zero problems or counter-intuitive cases while the proposed measure has successfully overcome this drawback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zadeh LA. Fuzzy sets. Information and Control. 1965;8:338–53.

    Article  MathSciNet  Google Scholar 

  2. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Sets and Systems. 1986;20(1):87–96.

    Article  MathSciNet  Google Scholar 

  3. Xu ZS, Chen J, Wu JJ. Cluster algorithm for intuitionistic fuzzy sets. Information Sciences. 2008;178:3775–900.

    Article  MathSciNet  Google Scholar 

  4. Zhang C, Fu H. Similarity measures on three kinds of fuzzy sets. Pattern Recognition Letters. 2006;27(12):1307–17.

    Article  Google Scholar 

  5. Edalatpanah SA. Neutrosophic structured element, Expert Systems (2020) e12542.

  6. Canedo BP, Morales ERC, Edalatpanah SA. A revised version of a lexicographical-based method for solving fully fuzzy linear programming problems with inequality constraints. Fuzzy Information and Engineering. 2020;1–20. https://doi.org/10.1080/16168658.2020.1761511.

  7. Ejegwa PA, Onyeke IC, Adah V. An algorithm for an improved intuitionistic fuzzy correlation measure with medical diagnostic application. Annals of Optimization Theory & Practice. 2020. https://doi.org/10.22121/AOTP.2020.249456.1041.

  8. Petrovic I, Kankaras M. A hybridized IT2FS-DEMATEL-AHP-TOPSIS multicriteria decision making approach: Case study of selection and evaluation of criteria for determination of air traffic control radar position. Decision Making: Applications in Management and Engineering. 2020;3(1):146–64.

    Google Scholar 

  9. Vilela M, Oluyemi G, Petrovski A. A holistic approach to assessment of value of information (VOI) with fuzzy data and decision criteria. Decision Making: Applications in Management and Engineering. 2020;3(2):97–118.

    Google Scholar 

  10. Shen F, Ma X, Li Z, Xu ZS, Cai D. An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Information Sciences. 2018;428:105–19.

    Article  MathSciNet  Google Scholar 

  11. Zhang H, Yu L. New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Information Sciences. 2013;245:181–96.

    Article  MathSciNet  Google Scholar 

  12. He Y, Chen H, Zhau L, Liu J, Tao Z. Intuitionistic fuzzy geometric interaction averaging operators and their application to multi-criteria decision making. Information Sciences. 2014;259:142–59.

    Article  MathSciNet  Google Scholar 

  13. Wang L, Li N. Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple attribute decision making. International Journal of Intelligent Systems. 2020;35(1):150–83.

    Article  Google Scholar 

  14. Peng X, Garg H. Multiparametric similarity measures on Pythagorean fuzzy sets with applications to pattern recognition. Applied Intelligence. 2019;49(12):4058–96.

    Article  Google Scholar 

  15. Chen SM. Measures of similarity between vague sets. Fuzzy Sets and Systems. 1995;74(2):217–23.

    Article  MathSciNet  Google Scholar 

  16. Hong DH, Kim C. A note on similarity measures between vague sets and between elements. Information Sciences. 1999;115:83–96.

    Article  MathSciNet  Google Scholar 

  17. Li DF, Cheng C. New similarity measure of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters. 2002;23:221–5.

    Article  Google Scholar 

  18. Mitchell HB. On the dengfeng chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters. 2003;24:3101–4.

    Article  Google Scholar 

  19. Liang Z, Shi P. Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters. 2003;24:2687–93.

    Article  Google Scholar 

  20. Hung WL, Yang MS. Similarity measures of intuitionistic fuzzy sets based on hausdorff distance. Pattern Recognition Letters. 2004;25:1603–11.

    Article  Google Scholar 

  21. Szmidt E, Kacprzyk J. A similarity measure for intuitionistic fuzzy sets and its application in supporting medical diagnostic reasoning. Lecture Notes in Computer Science. 2004;3070:388–93.

    Article  Google Scholar 

  22. Wang W, Xin X. Distance measure between intuitionistic fuzzy sets. Pattern Recognition Letters. 2005;26(13):2063–9.

    Article  Google Scholar 

  23. Liu HW. New similarity measures between intuitionistic fuzzy sets and between elements. Mathematical and Computer Modelling. 2005;42:61–70.

    Article  MathSciNet  Google Scholar 

  24. Song Y, Wang X, Lei L, Xue A. A new similarity measure between intuitionistic fuzzy sets and its application to pattern recognition, Abstract and Applied Analysis 2014. Article ID 384241, 2014, p. 11

  25. Khan MS, Lohani QD. A similarity measure for Atanassov intuitionistic fuzzy sets, and its application to clustering, in. International Workshop on Computational Intelligence. IEEE. 2016;2016:232–9.

    Google Scholar 

  26. Ngan RT, Son LH, Cuong BC, Ali M. H-max distance measure of intuitionistic fuzzy sets in decision making. Applied Soft Computing. 2018;69:393–425.

    Article  Google Scholar 

  27. Vlachos IK, Sergiadis GD. Intuitionistic fuzzy information - application to pattern recognition. Pattern Recognition Letters. 2007;28(2):197–206.

    Article  Google Scholar 

  28. Hung WL, Yang MS. Similarity measures of intuitionistic fuzzy sets based on \(\mathrm{lp}\) metric. International Journal of Approximate Reasoning. 2007;46:120–36.

    Article  MathSciNet  Google Scholar 

  29. Hung WL, Yang MS. On similarity measures between intuitionistic fuzzy sets. International Journal of Intelligent Systems. 2008;23(3):364–83.

    Article  Google Scholar 

  30. Iancu I. Intuitionistic fuzzy similarity measures based on frank t-norms family. Pattern Recognition Letters. 2014;42:128–36.

    Article  Google Scholar 

  31. Beliakov G, Pagola M, Wilkin T. Vector valued similarity measures for atanassov’s intuitionistic fuzzy sets. Information Sciences. 2014;280:352–67.

    Article  MathSciNet  Google Scholar 

  32. Chen SM, Chang CH. A novel similarity measure between Atanassov’s intuitionistic fuzzy sets based on transformation techniques with applications to pattern recognition. Information Sciences. 2015;291:96–114.

    Article  Google Scholar 

  33. Jiang Q, Jin X, Lee SJ, Yao S. A new similarity/distance measure between intuitionistic fuzzy sets based on the transformed isosceles triangles and its applications to pattern recognition. Expert Systems with Applications. 2019;116:439–53.

    Article  Google Scholar 

  34. Chen SM, Cheng SH, Lan TC. A novel similarity measure between intuitionistic fuzzy sets based on the centroid points of transformed fuzzy numbers with applications to pattern recognition. Information Sciences. 2016;343–344:15–40.

    Article  MathSciNet  Google Scholar 

  35. Dhivya J, Sridevi B. A novel similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers with applications to pattern recognition and medical diagnosis. Applied Mathematics-A Journal of Chinese Universities. 2019;34(2):229–52.

    Article  MathSciNet  Google Scholar 

  36. Chen SM, Chang CH. Fuzzy multiattribute decision making based on transformation techniques of intuitionistic fuzzy values and intuitionistic fuzzy geometric averaging operators. Information Sciences. 2016;352–353:133–49.

    Article  Google Scholar 

  37. Ye J. Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and Computer Modelling. 2011;53(1–2):91–7.

    Article  MathSciNet  Google Scholar 

  38. Boran FE, Akay D. A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information Sciences. 2014;255:45–57.

    Article  MathSciNet  Google Scholar 

  39. Hwang CM, Yang MS, Hung WL, Lee MG. A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Information Sciences. 2012;189:93–109.

    Article  MathSciNet  Google Scholar 

  40. Garg H, Kaur G. Quantifying gesture information in brain hemorrhage patients using probabilistic dual hesitant fuzzy sets with unknown probability information. Computers and Industrial Engineering. 2020;140:106211. https://doi.org/10.1016/j.cie.2019.106211.

  41. Yang Z, Garg H, Li J, Srivastavad G, Cao Z. Investigation of multiple heterogeneous relationships using a q-rung orthopair fuzzy multi-criteria decision algorithm. Neural Computing and Applications. 2020;1–22. https://doi.org/10.1007/s00521-020-05003-5.

  42. Yang Z, Li X, Garg H, Peng R, Wu S, Huang L. Group decision algorithm for aged healthcare product purchase under q-rung picture normal fuzzy environment using heronian mean operator. International Journal of Computational Intelligence Systems. 2020;13(1):1176–97.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harish Garg.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Appendix

Appendix

Proof of Theorem 1:

Proof

Let \({\mathcal {P}}=\{\langle x_j,\zeta _{\mathcal {P}}(x_j), \vartheta _{\mathcal {P}}(x_j)\rangle \mid j=1,2, \ldots , n \}\) and \({\mathcal {Q}}=\{\langle x_j,\zeta _{{\mathcal {Q}}}(x_j), \vartheta _{{\mathcal {Q}}}(x_j)\rangle \mid j=1,2, \ldots , n \}\) be two IFSs. Since, \(0 \le \zeta _{\mathcal {P}}(x_j),\zeta _{{\mathcal {Q}}}(x_j),\vartheta _{\mathcal {P}}(x_j),\vartheta _{{\mathcal {Q}}}(x_j) \le 1\). Therefore, \(-1 \le \zeta _{\mathcal {P}}(x_j)-\zeta _{{\mathcal {Q}}}(x_j) \le 1\) and \(-1 \le \vartheta _{\mathcal {P}}(x_j)-\vartheta _{{\mathcal {Q}}}(x_j) \le 1\).

  1. (P1)

    For non-negative real number k, we have \(-(k+2) \le (k+2)(\zeta _{\mathcal {P}}(x_j)-\zeta _{{\mathcal {Q}}}(x_j)) \le k+2\) and \(-(2k+1) \le -(2k+1)(\vartheta _{\mathcal {P}}(x_j)-\vartheta _{{\mathcal {Q}}}(x_j)) \le 2k+1\) which implies that \(-(3k+3) \le (k+2)(\zeta _{\mathcal {P}}(x_j)-\zeta _{{\mathcal {Q}}}(x_j))-(2k+1)(\vartheta _{\mathcal {P}}(x_j)-\vartheta _{{\mathcal {Q}}}(x_j)) \le 3k+3\). Thus, \(0 \le \frac{\big |(k+2)(\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j))-(2k+1)(\vartheta _{\mathcal {P}}(x_j)-\vartheta _{\mathcal {Q}}(x_j))\big |}{3(k+1)} \le 1\). Similarly, it can be obtained that, \(0 \le \frac{\big |2(\vartheta _{\mathcal {P}}(x_j) - \vartheta _{\mathcal {Q}}(x_j)) - (\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j))\big |}{3} \le 1\). Hence, using Eq. (4), we obtain that

    $$\begin{aligned} 0\le {\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right)\le & {} \sum \limits _{j=1}^n\psi _j\left[ \left( 1-\frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)}{2}\right) +\left( \frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)}{2}\right) \right] =\sum \limits _{j=1}^n\psi _j=1. \end{aligned}$$
  2. (P2)

    For \({\mathcal {P}}={\mathcal {Q}}\), we have \(\zeta _{\mathcal {P}}(x_j)=\zeta _{\mathcal {Q}}(x_j)\), \(\vartheta _{\mathcal {P}}(x_j)=\vartheta _{\mathcal {Q}}(x_j)\) and \(h_{\mathcal {P}}(x_j)=h_{\mathcal {Q}}(x_j)\) \(\forall\)\(j=1,2, \ldots ,n\). Then, from Eq. (4), we get \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right) =0\). Conversely, when \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right) =0\) then from Eq. (4), we have

    $$\begin{aligned} & \quad \left( \frac{\big |(k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) \big |}{3(k+1)}\right) \left( 1-\frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)}{2}\right) \\ & + \left( \frac{\big |2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) \big |}{3}\right) \left( \frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)}{2}\right) =0 \end{aligned}$$

    which implies

    $$\begin{aligned}&(k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) =0 ~~ \text {or} ~~ h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j) = 2 ~~~\\ & \text {and} \ 2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) =0 ~~ \text {or} ~~ h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j) = 0 \end{aligned}$$

    and hence it leads to formulation of three cases which are:

    1. Case 1:

      When \((k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) = 0\) and \(2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) = 0.\) From \(2(\vartheta _{\mathcal {P}}(x_j) - \vartheta _{\mathcal {Q}}(x_j))-(\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)) =0\), we obtain \(\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)=2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right)\). Using this relation in \((k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) = 0\), we obtain \(3\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) = 0\) and it gives \(\vartheta _{\mathcal {P}}(x_j) =\vartheta _{\mathcal {Q}}(x_j)\). Further, using \(\vartheta _{\mathcal {P}}(x_j) =\vartheta _{\mathcal {Q}}(x_j)\) in the relation \(\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)=2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right)\), we get \(\zeta _{\mathcal {P}}(x_j)=\zeta _{\mathcal {Q}}(x_j)\). Hence, \({\mathcal {P}}={\mathcal {Q}}\).

    2. Case 2:

      When \((k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) = 0\) and \(h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)=0\). Since, \(h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)=0\) which implies that \(\zeta _{\mathcal {P}}(x_j)+\vartheta _{\mathcal {P}}(x_j)=1\) and \(\zeta _{\mathcal {Q}}(x_j)+\vartheta _{\mathcal {Q}}(x_j)\) \(=1\). Thus, \(\zeta _{\mathcal {P}}(x_j) - \zeta _{\mathcal {Q}}(x_j) = -\left( \vartheta _{\mathcal {P}}(x_j) - \vartheta _{\mathcal {Q}}(x_j)\right)\). Using this relation in \((k+2)\left( \zeta _{\mathcal {P}}(x_j)- \zeta _{\mathcal {Q}}(x_j)\right) - (2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) = 0\), we obtain that \(-(3k+3)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) =0\) which further gives \(\vartheta _{\mathcal {P}}(x_j)=\vartheta _{\mathcal {Q}}(x_j)\). Now, using \(\vartheta _{\mathcal {P}}(x_j)=\vartheta _{\mathcal {Q}}(x_j)\) in the relation \(\zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\) \(=-\left( \vartheta _{\mathcal {P}}(x_j)-\vartheta _{\mathcal {Q}}(x_j)\right)\), we obtain that \(\zeta _{\mathcal {P}}(x_j)=\zeta _{\mathcal {Q}}(x_j)\). Hence, \({\mathcal {P}}={\mathcal {Q}}\).

    3. Case 3:

      When \(h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)=2\) and \(2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) = 0\). Since, \(h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j) = 2\) which implies that \(\zeta _{\mathcal {P}}(x_j) + \vartheta _{\mathcal {P}}(x_j) + \zeta _{\mathcal {Q}}(x_j) + \vartheta _{\mathcal {Q}}(x_j)=0\) which is possible only when \(\zeta _{\mathcal {P}}(x_j)=\vartheta _{\mathcal {P}}(x_j) = \zeta _{\mathcal {Q}}(x_j) = \vartheta _{\mathcal {Q}}(x_j)=0\). Hence, \({\mathcal {P}}={\mathcal {Q}}\).

    Thus, in all cases, we obtain \({\mathcal {P}}={\mathcal {Q}}\) when \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right) =0\).

  3. (P3)

    For any two positive real number ab, we know \(\mid a - b\mid = \mid b-a\mid\). Thus, from Eq. (4), we can easily obtain that \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right) = {\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {Q}},{\mathcal {P}}\right)\).

  4. (P4)

    Let \({\mathcal {R}}=\{\langle x_j,\zeta _{{\mathcal {R}}}(x_j), \vartheta _{{\mathcal {R}}}(x_j)\rangle \mid j=1,2, \ldots , n \}\) be an IFN such that \({\mathcal {P}}\subseteq {\mathcal {Q}}\subseteq {\mathcal {R}}\). Therefore, by using Definition 3, we obtain that \(\zeta _{\mathcal {P}}(x_j) \le \zeta _{{\mathcal {Q}}}(x_j) \le \zeta _{{\mathcal {R}}}(x_j)\) and \(\vartheta _{\mathcal {P}}(x_j) \ge \vartheta _{{\mathcal {Q}}}(x_j) \ge \vartheta _{{\mathcal {R}}}(x_j)\) which gives that \(\zeta _{\mathcal {P}}(x_j)-\zeta _{{\mathcal {Q}}}(x_j) \le 0\) and \(\vartheta _{\mathcal {P}}(x_j)-\vartheta _{{\mathcal {Q}}}(x_j) \ge 0\). Therefore, \((k+2)(\zeta _{\mathcal {P}}(x_j)-\zeta _{{\mathcal {Q}}}(x_j))-(2k+1)(\vartheta _{\mathcal {P}}(x_j)-\vartheta _{{\mathcal {Q}}}(x_j)) \le 0\) and hence

    $$\begin{aligned} & {}\frac{\mid (k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) -(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) \mid }{3(k+1)} \\ & = \frac{(2k+1)\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -(k+2)\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) }{3(k+1)}.\end{aligned}$$

    Similarly, it can be obtained that

    $$\begin{aligned} &\frac{\big |2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) \big |}{3} \\ &\quad =\frac{2\left( \vartheta _{\mathcal {P}}(x_j) -\vartheta _{\mathcal {Q}}(x_j)\right) -\left( \zeta _{\mathcal {P}}(x_j)-\zeta _{\mathcal {Q}}(x_j)\right) }{3}. \end{aligned}$$

    Thus, based on these equations, we have

    $$\begin{aligned} &{\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {R}}\right) -{\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right) \\ & = {} \sum \limits _{j=1}^n\psi _j \begin{bmatrix} \left( \frac{(2k+1)\left( \vartheta _{\mathcal {Q}}(x_j) -\vartheta _{\mathcal {R}}(x_j)\right) -(k+2)\left( \zeta _{\mathcal {Q}}(x_j)-\zeta _{\mathcal {R}}(x_j)\right) }{3(k+1)}\right) \\ +\left( \frac{h_{\mathcal {R}}(x_j)-h_{\mathcal {P}}(x_j)}{3(k+1)}\right) \left( \frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {R}}(x_j)}{2}\right) \\ +\left( \frac{h_{\mathcal {P}}(x_j)-h_{\mathcal {Q}}(x_j)}{3(k+1)}\right) \left( \frac{h_{\mathcal {P}}(x_j)+h_{\mathcal {Q}}(x_j)}{2}\right) \end{bmatrix} \\ &= {} \sum \limits _{j=1}^n\psi _j \begin{bmatrix} \left( \frac{(2k+1)\left( \vartheta _{\mathcal {Q}}(x_j) -\vartheta _{\mathcal {R}}(x_j)\right) -(k+2)\left( \zeta _{\mathcal {Q}}(x_j)-\zeta _{\mathcal {R}}(x_j)\right) }{3(k+1)}\right) \\ + \frac{\left( \left( \vartheta _{\mathcal {Q}}(x_j) -\vartheta _{\mathcal {R}}(x_j)\right) +\left( \zeta _{\mathcal {Q}}(x_j) -\zeta _{\mathcal {R}}(x_j)\right) \right) \left( h_{\mathcal {R}}(x_j)+h_{\mathcal {Q}}(x_j)\right) }{6(k+1)} \end{bmatrix}\end{aligned}$$
    $$\begin{aligned}= & {} \sum \limits _{j=1}^n\psi _j \left[ \begin{aligned}&\left( \frac{2k+1}{3(k+1)}+\frac{h_{\mathcal {R}}(x_j)+h_{\mathcal {Q}}(x_j)}{6(k+1)}\right) \left( \vartheta _{\mathcal {Q}}(x_j) -\vartheta _{\mathcal {R}}(x_j)\right) \\&\qquad -\left( \frac{k+2}{3(k+1)}-\frac{h_{\mathcal {R}}(x_j)+h_{\mathcal {Q}}(x_j)}{6(k+1)}\right) \left( \zeta _{\mathcal {Q}}(x_j) -\zeta _{\mathcal {R}}(x_j)\right) \end{aligned} \right] \\= & {} \sum \limits _{j=1}^n\psi _j \left[ \begin{aligned}&\left( \frac{2k+1}{3(k+1)}+\frac{h_{\mathcal {R}}(x_j)+h_{\mathcal {Q}}(x_j)}{6(k+1)}\right) \left( \vartheta _{\mathcal {Q}}(x_j) -\vartheta _{\mathcal {R}}(x_j)\right) \\ & \quad +\left( \frac{4+\zeta _{\mathcal {Q}}(x_j) +\zeta _{\mathcal {R}}(x_j)+\vartheta _{\mathcal {Q}}(x_j) +\vartheta _{\mathcal {R}}(x_j)}{6(k+1)}\right) \\ & \left( \zeta _{\mathcal {R}}(x_j) -\zeta _{\mathcal {Q}}(x_j)\right) \end{aligned} \right] \\ \ge & {} \ 0 \end{aligned}$$

    Thus, \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {R}}\right) \ge {\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {Q}}\right)\). Similarly, it can be obtained that \({\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {P}},{\mathcal {R}}\right) \ge {\mathcal {D}}_{\mathcal {C}}\left( {\mathcal {Q}},{\mathcal {R}}\right)\). Hence, ’\({\mathcal {D}}_{\mathcal {C}}\)’ is a valid distance measure.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Rani, D. Some Information Measures Based on Centroid, Orthocenter, Circumcenter and Incenter Points of Transformed Triangular Fuzzy Numbers and their Applications. Cogn Comput 13, 946–971 (2021). https://doi.org/10.1007/s12559-021-09842-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-021-09842-9

Keywords

Navigation