Skip to main content

Advertisement

Log in

A Review on Feature Binding Theory and Its Functions Observed in Perceptual Process

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Binding problem, which is also called feature binding, is primarily about integrating distributed information scattered on different cortical areas in a reasonable way. As a key problem in cognitive science and neuroscience, this concept is increasingly becoming a focus of consciousness study. This paper first introduced the concept, characteristics, and biological basis of feature binding. Then, this paper illustrated three feature binding theories namely feature integration theory, synchronous neural activation theory, and neural network model of feature binding, and then reviewed the advantages and disadvantages of these three feature binding theories. To demonstrate why feature binding indeed exists, we reviewed works on the functions of feature binding observed in perceptual learning. Conclusions were reached that feature binding exists in many processes of perception. This paper also suggested future research in this area should focus on systematic study of bundled brain mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. Here, we suppose the box and the hat have only three attributes just to make our demonstration simpler.

References

  1. Damasio AR. The brain binds entities and events by multiregional activation from convergence zones. Neural Comput. 1989;1:123–32.

    Article  Google Scholar 

  2. Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240:740–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wang X, Shi Z, Zhiwei S, Shi Z. A feature-based model for the integration of object recognition theory. J. Grad. Univ. Chinese Acad Sci. 2012;29:399–405.

    Google Scholar 

  4. Friedman-Hill SR, Robertson LC, Desimone R, Ungerleider LG. Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci U S A. 2003;100:4263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman-Hill SR, Robertson LC, Treisman AM. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science. 1995;269:853–5.

    Article  CAS  PubMed  Google Scholar 

  6. Zeki S. Cerebral akinetopsia (visual motion blindness). Brain. 1991;114:811–24.

    Article  PubMed  Google Scholar 

  7. Sereno MI, Dale AM, Reppas JB, Kwong et al. KK. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 1995;268:889–893.

  8. Zmigrod S, de Sonneville LMJ, Colzato LS, Swaab H, Hommel B. Cognitive control of feature bindings: evidence from children with autistic spectrum disorder. Psychol Res. 2013;77:147–54.

    Article  PubMed  Google Scholar 

  9. Van Der Helm PA. Cognitive architecture of perceptual organization: from neurons to gnosons. Cogn Process. 2012;13:13–40.

    Article  PubMed  Google Scholar 

  10. Han Y, Ding S. Research and application analysis of feature binding. Intell Inf Process VII. 2014. p. 133–40.

  11. Treisman A. Feature binding, attention and object perception. Philos Trans R Soc London. 1998;353:1295–306.

    Article  CAS  Google Scholar 

  12. Treisman AM, Gelade GA. Feature-integration theory of attention. Cogn Psychol. 1980;12:97–136.

    Article  CAS  PubMed  Google Scholar 

  13. Von Der Malsburg C. The correlation theory of brain function. Model Neural Networks II. 1994;1–26.

  14. von der Malsburg C. Binding in models of perception and brain function. Curr Opin Neurobiol. 1995;5:520–6.

    Article  PubMed  Google Scholar 

  15. Watanabe M, Nakanishi K, Aihara K. Solving the binding problem of the brain with bi-directional functional connectivity. Neural Netw. 2001;14:395–406.

    Article  CAS  PubMed  Google Scholar 

  16. Engel AK, Singer W. Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci. 2001;5:16–25.

    Article  PubMed  Google Scholar 

  17. Yu J, Rui Y, Tao D. Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process. 2014;23:2019–32.

    Article  PubMed  Google Scholar 

  18. Yu J, Rui Y, Tang YY, Tao D. High-order distance-based multiview stochastic learning in image classification. IEEE Trans Cybern. 2014;44:2431–42.

    Article  PubMed  Google Scholar 

  19. Yu J, Hong R, Wang M, You J. Image clustering based on sparse patch alignment framework. Pattern Recogn. 2014;47:3512–9.

    Article  Google Scholar 

  20. Yu J, Tao D, Member S, Wang M. Learning to rank using user clicks and visual features for image retrieval. 2015;45:767–79.

  21. Jin J, Xu B, Wang Y. A face detection and location method based on feature binding. Signal Process Image Commun [Internet] Elsevier. 2015;36:179–89.

    Article  Google Scholar 

  22. Zheng Y, Jeon B, Xu D, QMJ W, Zhang H. Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst. 2015;28:961–73.

    Google Scholar 

  23. van der Spoel E, Rozing MP, Houwing-Duistermaat JJ, Eline Slagboom P, Beekman M, de Craen AJM, et al. Association analysis of insulin-like growth factor-1 axis parameters with survival and functional status in nonagenarians of the Leiden Longevity Study. Aging (Albany NY). 2015;7:956–63.

    Article  Google Scholar 

  24. Zhuo G, Yu X. Real-world audititory perception based on auditory feature binding. Proc Int Conf Comput Asp Soc Netw CASoN’10. 2010;351–4.

  25. Ding S, Zhang J, Jia H, Qian J. An adaptive density data stream clustering algorithm. Cognit Comput 2015;30–8.

  26. Chen B, Shu H, Zhang H, Chen G, Luo L, Quaternions A. Color image analysis by quaternion zernike moments. 2010;7–10.

  27. Zhang N, Ding S, Shi Z. Denoising laplacian multi-layer extreme learning machine. Neurocomputing. 2016;171(C):1066–74.

  28. Jian Li, Xiaolong Li, Bin Yang, Xingming Sun. Segmentation-based Image copy-move forgery detection scheme, IEEE transactions on information forensics and security, vol. 10, no. 3, 2015. p. 507–518.

  29. Xia Z, Wang X, Sun X, Wang B. Steganalysis of least significant bit matching using multi-order differences. Security & Communication Networks, 2014;7(8):1283–91.

  30. Rao ACS, Somayajulu D, Banka H, Roy S. Feature binding technique for integration of biological databases with optimized search and retrieve. Procedia Technol. 2012;6:622–9.

    Article  Google Scholar 

  31. Wen X, Shao L, Xue Y, Fang W. A rapid learning algorithm for vehicle classification. Inf Sci (Ny) Elsevier Inc. 2015;295:395–406.

    Article  Google Scholar 

  32. Chen Y, Hao C, Wu W, Wu E. Robust dense reconstruction by range merging based on confidence estimation. Sci China Inf Sci 2016;59(9):1-11.

  33. Wang J, Li X-L, Xing G-G, Wan Y. The gamma frequency band neural oscillation: generation mechanisms and functions. Prog Biochem Biophys. 2011;38:688–93.

    Article  Google Scholar 

  34. Gray CM, König P, Engel AK, Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989;338:334–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sheer DE. Focused arousal and the cognitive 40-Hz event-related potentials: differential diagnosis of Alzheimer’s disease. Prog Clin Biol Res. 1989;317:79–94.

    CAS  PubMed  Google Scholar 

  36. Murthy VN, Fetz EE. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A. 1992;89:5670–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tallon-Baudry C, Bertrand O, Peronnet F, Pernier J. Induced γ-band activity during the delay of a visual short-term memory task in humans. J Neurosci. 1998;18:4244–54.

    CAS  PubMed  Google Scholar 

  38. Gruber T, Muller MM. Effects of repetition priming on induced gamma band responses in the human EEG. Psychophysiology. 2002;39:S39.

    Google Scholar 

  39. Galambos R, Makeig S, Talmachoff PJ. A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci U S A. 1981;78:2643–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Babiloni C, Babiloni F, Carducci F, Cincotti F, Rosciarelli F, Arendt-Nielsen L, et al. Human brain oscillatory activity phase-locked to painful electrical stimulations: a multi-channel EEG study. Hum Brain Mapp. 2002;15:112–23.

    Article  PubMed  Google Scholar 

  41. Kreiter AK, Singer W. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J Neurosci. 1996;16:2381–96.

    CAS  PubMed  Google Scholar 

  42. Kaiser J, Buhler M, Lutzenberger W. Magnetoencephalographic gamma-band responses to illusory triangles in humans. NeuroImage. 2004;23:551–60.

    Article  PubMed  Google Scholar 

  43. Gross J, Schnitzler A, Timmermann L, Ploner M. gamma Oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol 2007;5:e133.

  44. Yuval-Greenberg S, Deouell LY. What you see is not (always) what you hear: induced gamma band responses reflect cross-modal interactions in familiar object recognition. J Neurosci. 2007;27:1090–6.

    Article  CAS  PubMed  Google Scholar 

  45. Fell J, Klaver P, Lehnertz K, Grunwald T, Schaller C, Elger CE, et al. Human memory formation is accompanied by rhinal-hippocampal coupling and decoupling. Nat Neurosci. 2001;4:1259–64.

    Article  CAS  PubMed  Google Scholar 

  46. Sederberg PB, Schulze-Bonhage A, Madsen JR, Bromfield EB, McCarthy DC, Brandt A, et al. Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cereb Cortex. 2007;17:1190–6.

    Article  PubMed  Google Scholar 

  47. Kaiser J, Ripper B, Birbaumer N, Lutzenberger W. Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. NeuroImage. 2003;20:816–27.

    Article  PubMed  Google Scholar 

  48. Stam CJ, Van Cappellen van Walsum AM, Pijnenburg YAL, Berendse HW, de Munck JC, Scheltens P, et al. Generalized synchronization of MEG recordings in Alzheimer’s disease: evidence for involvement of the gamma band. J Clin Neurophysiol 2002;19:562–574.

  49. Bouvier S, Treisman A. Feature binding signals in visual cortex. J Vis. 2010;10:96.

    Article  Google Scholar 

  50. Ashby FG, Prinzmetal W, Ivry R, Maddox WTA. Formal theory of feature binding in object perception. Psychol Rev. 1996;103:165–92.

    Article  CAS  PubMed  Google Scholar 

  51. Wichert A. The role of attention in the context of associative memory. Cognit. Comput. 2011;3:311–20.

    Article  Google Scholar 

  52. Treisman A. Feature binding, attention, and object perception. Essent Sources Sci Study Conscious. 1998;8:226.

    Google Scholar 

  53. Corbetta M, Shulman GL, Miezin FM, Petersen SE. Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science. 1995;270:802–5.

    Article  CAS  PubMed  Google Scholar 

  54. Ashbridge E, Walsh V, Cowey A. Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia. 1997;35:1121–31.

    Article  CAS  PubMed  Google Scholar 

  55. DeSchepper B, Treisman A. Visual memory for novel shapes: implicit coding without attention. J Exp Psychol Learn Mem Cogn. 1996;22:27–47.

    Article  CAS  PubMed  Google Scholar 

  56. Singer W, Gray CM. Visual feature integration and the temporal correlation hypothesis. Ann Rev Neurosci. 1995;18:555–86.

    Article  CAS  PubMed  Google Scholar 

  57. Engel AK, Müller DJ. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol. 2000;7:715–8.

    Article  CAS  PubMed  Google Scholar 

  58. Engel AK, Kreiter AK, Konig P, Singer W. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science. 1991;252:1177–9.

    Article  CAS  PubMed  Google Scholar 

  59. Gold I. Does 40-Hz oscillation play a role in visual consciousness? Conscious Cogn. 1999;8:186–95.

    Article  CAS  PubMed  Google Scholar 

  60. Hughes JR. Gamma, fast, and ultrafast waves of the brain: their relationships with epilepsy and behavior. Epilepsy Behav. 2008;13:25–31.

    Article  PubMed  Google Scholar 

  61. Wersing H, Steil J, Ritter HA. Competitive-layer model for feature binding and sensory segmentation. Neural Comput. 2001;13:357–87.

    Article  CAS  PubMed  Google Scholar 

  62. Ashbridge E, Cowey A, Wade D. Does parietal cortex contribute to feature binding? Neuropsychologia. 1999;37:999–1004.

    Article  CAS  PubMed  Google Scholar 

  63. Mitchell KJ, Johnson MK, Raye CL, D’Esposito M. fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Cogn Brain Res. 2000;10:197–206.

    Article  CAS  Google Scholar 

  64. Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD. Integration of diverse information in working memory within the frontal lobe. Nat Neurosci. 2000;3:85–90.

    Article  CAS  PubMed  Google Scholar 

  65. Llinás RR. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science. 1988;242:1654–64.

    Article  PubMed  Google Scholar 

  66. Liu T, Tao D. Classification with noisy labels by importance reweighting. IEEE Trans Pattern Anal Mach Intell. 2016;38:447–61.

    Article  PubMed  Google Scholar 

  67. Chen B, Shu H, Coatrieux G, Chen G, Sun X, Coatrieux JL. Color image analysis by quaternion-type moments. J Math Imaging Vision 2015;51(1):625–28.

  68. Colzato LS, van Wouwe NC, Hommel B. Feature binding and affect: emotional modulation of visuo-motor integration. Neuropsychologia. 2007;45:440–6.

    Article  PubMed  Google Scholar 

  69. Castillo JC, Castro-González Á, Fernández-Caballero A, Latorre JM, Pastor JM, Fernández-Sotos A, et al. Software architecture for smart emotion recognition and regulation of the ageing adult. Cognit Comput. 2016;8:357–67.

    Article  Google Scholar 

  70. Sun R, Wilson N, Lynch M. Emotion: a unified mechanistic interpretation from a cognitive architecture. Cognit Comput Springer US. 2016;8:1–14.

    Article  Google Scholar 

  71. Castelo-Branco M, Goebel R, Neuenschwander S, Singer W. Neural synchrony correlates with surface segregation rules. Nature. 2000;405:685–9.

    Article  CAS  PubMed  Google Scholar 

  72. Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci. 1996;16:4240–9.

    CAS  PubMed  Google Scholar 

  73. Sato YD, Nagatomi T, Horio K, Miyamoto H. The cognitive mechanisms of multi-scale perception for the recognition of extremely similar faces. Cognit. Comput. Springer US. 2015;7:501–8.

    Article  Google Scholar 

  74. Fries P, Roelfsema PR, Engel AK, König P, Singer W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci U S A. 1997;94:12699–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brecht M, Singer W, Engel AK. Patterns of synchronization in the superior colliculus of anesthetized cats. J Neurosci. 1999;19:3567–79.

    CAS  PubMed  Google Scholar 

  76. Brown RJ, Norcia AMA. Method for investigating binocular rivalry in real-time with the steady-state VEP. Vis Res. 1997;37:2401–8.

    Article  CAS  PubMed  Google Scholar 

  77. Srinivasan R, Russell DP, Edelman GM, Tononi G. Increased synchronization of neuromagnetic responses during conscious perception. J Neurosci. 1999;19:5435–48.

    CAS  PubMed  Google Scholar 

  78. Takac M, Knott A. A neural network model of episode representations in working memory. Cognit. Comput. Springer US. 2015;7:509–25.

    Article  Google Scholar 

  79. Keizer AW, Verment RS, Hommel B. Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval. Neuroimage Elsevier Inc. 2010;49:3404–13.

    Article  Google Scholar 

  80. Sarnthein J, Petsche H, Rappelsberger P, Shaw GL, Von Stein A. Synchronization between prefrontal and posterior association cortex during human working memory. Proc Natl Acad Sci U S A. 1998;95:7092–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Isella V, Molteni F, Mapelli C, Ferrarese C. Short term memory for single surface features and bindings in ageing: a replication study. Brain Cogn. 2015;96:38–42.

    Article  PubMed  Google Scholar 

  82. Saiki J, Miyatsuji H. Feature binding in visual working memory evaluated by type identification paradigm. Cognition. 2007;102:49–83.

    Article  PubMed  Google Scholar 

  83. Bays PM, EY W, Husain M. Storage and binding of object features in visual working memory. Neuropsychologia. 2011;49:1622–31.

    Article  PubMed  Google Scholar 

  84. Lekeu F, Marczewski P, Van Der Linden M, Collette F, Degueldre C, Del Fiore G, et al. Effects of incidental and intentional feature binding on recognition: a behavioural and PET activation study. Neuropsychologia. 2002;40:131–44.

    Article  CAS  PubMed  Google Scholar 

  85. Chalfonte BL, Verfaellie M, Johnson MK, Reiss L. Spatial location memory in amnesia: binding item and location information under incidental and intentional encoding conditions. Memory. 1996;4:591–614.

    Article  CAS  PubMed  Google Scholar 

  86. Roy A. On findings of category and other concept cells in the brain: some theoretical perspectives on mental representation. Cognit. Comput. Springer US. 2014;7:279–84.

    Article  Google Scholar 

  87. Henderson J. Connectionist syntactic parsing using temporal variable binding. J Psycholinguist Res. 1994;23:353–79.

    Article  Google Scholar 

  88. Ajjanagadde V, Shastri L. Rules and variables in neural nets. Neural Comput. 1991;3:121–34.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos.61379101 and 61672522), the National Key Basic Research Program of China (No.2013CB329502), the Priority Academic Program Development of Jiangsu Higer Education Institutions, and Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifei Ding.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5). Additional informed consent was obtained from all patients for which identifying information is included in this article.

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, S., Meng, L., Han, Y. et al. A Review on Feature Binding Theory and Its Functions Observed in Perceptual Process. Cogn Comput 9, 194–206 (2017). https://doi.org/10.1007/s12559-016-9446-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-016-9446-0

Keywords

Navigation