Skip to main content
Log in

A Novel Near-Infrared Spectroscopy Based Spatiotemporal Cognition Study of the Human Brain Using Clustering

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In this study, we investigate how the two hemispheres of the brain are involved spatiotemporally in a cognitive-based setup when people relate different colors with different concepts (for example, the color ‘blue’ associated with the word ‘dependable’ or ‘cheap’) objectively or subjectively. We developed an experimental setup using a 17-channel near-infrared spectroscopy (NIRS) device to measure the changes in brain hemoglobin concentration during a concept–color association task in a block design paradigm. The channel-wise activation data were recorded for 10 male students; after cleansing, the data were clustered using an indigenous clustering technique to identify channels having similar spatiotemporal activity. Data mining was imperative because of the big data generated by NIRS (ca. 0.1+ MB textual data captured per sec involving high volume and veracity), for which the traditional statistical techniques for data analysis could have failed to discover the patterns of interest. The results showed that it was possible to associate brain activities in the two hemispheres to study the association among linguistic concepts and colors, with most neural activity taking place in the right hemisphere of the brain characterized with intuition, subjectivity, etc. Thus, the study suggests novel application areas of neural activity analysis, such as color as marketing cue, response of obese versus lean to food intake, traditional versus neural data validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jöbsis FF. Non-invasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264–7.

    Article  PubMed  Google Scholar 

  2. Villringer A, Chance B. Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 1997;20(10):435–42.

    Article  CAS  PubMed  Google Scholar 

  3. Strangman G, Boas DA, Sutton JP. Non-invasive neuroimaging using near infrared light. Biol Psychiatry. 2002;52(7):679–93.

    Article  PubMed  Google Scholar 

  4. Obrig H, Villringer A. Beyond the visible: imaging the human brain with light. J Cereb Blood Flow Metab. 2003;23(1):1–18.

    Article  PubMed  Google Scholar 

  5. Madsen PL, Secher NH. Near-infrared oximetry of the brain. Prog Neurobiol. 1999;58(6):541–60.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Rawi PG. Near-infrared spectroscopy in brain injury: today’s perspective. Acta Neurochir Suppl. 2005;95:453–7.

    Article  CAS  PubMed  Google Scholar 

  7. Cannestra AF, Wartenburger I, Obrig H. Functional assessment of Broca’s area using near infrared spectroscopy in humans. NeuroReport. 2003;14(15):1961–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bortfield H, Wruck E, Boas DA. Assessing infants cortical response to speech using near infrared spectroscopy. Neuroimage. 2007;34(1):407–15.

    Article  Google Scholar 

  9. Schroeter ML, Zysset S, Kupka T, Kruggel F, Cramon DY. Near-infrared spectroscopy can detect brain activity during a color–word matching stroop task in an event-related design. Hum Brain Mapp. 2002;17:61–71.

    Article  PubMed  Google Scholar 

  10. Heekeren HR, Obrig H, Wenzel R, Eberle K, Ruben J, Villringer K, Kurth R, Villringer A. Cerebral haemoglobin oxygenation during sustained visual stimulation: a near infrared spectroscopy study. Philos Trans R Soc Lond Ser B. 1997;352:743–50.

    Article  CAS  Google Scholar 

  11. Meek JH, Elwell CE, Khan MJ, Romaya J, Wyatt JS, Delpy DT, Zeki S. Regional changes in cerebral haemodynamics as a result of a visual stimulus measured by near infrared spectroscopy. Proc R Soc Lond Ser B 1995;261(1362):351–6.

    Article  CAS  Google Scholar 

  12. Sakatani K, Chen S, Lichty W, Zuo H, Wang YP. Cerebral blood oxygenation changes induced by auditory stimulation in newborn infants measured by near infrared spectroscopy. Early Hum Dev. 1999;55:229–36.

    Article  CAS  PubMed  Google Scholar 

  13. Sato H, Takeuchi T, Sakai KL. Temporal cortex activation during speech recognition: an optical topography study. Cognition. 1999;73:55–66.

    Article  Google Scholar 

  14. Schecklmann M, Ehlis AC, Plichta MM, Fallgatter AJ. Functional near infrared spectroscopy: a long term reliable tool for measuring brain activity during verbal fluency. Neuroimaging. 2008;43(1):147–55.

    Article  Google Scholar 

  15. Cutini S, Moro SB, Bisconti S. Functional near infrared optical imaging in cognitive neuroscience: an introductory review. Near-Infrared Spectrosc. 2012;20:75–92.

    Article  CAS  Google Scholar 

  16. Functional areas of the cerebral cortex [Internet]. http://www.wisegeek.com/what-is-the-motor-cortex.htm. Retrieved 17 Aug 2015.

  17. Fehrman K. Color: the secret influence. 2nd ed. Upper Saddle River: Prentice Hall; 2004.

    Google Scholar 

  18. Goi C-L. The impact of colors on online marketing communications. World Acad Sci Eng Technol 2012;6(2):97–101.

    Google Scholar 

  19. Yoon S, Taha B, Bakken S. Using a data mining approach to discover behavior correlates of chronic disease: a case study of depression. Stud Health Technol Inf. 2014;201:71–8.

    Google Scholar 

  20. Nielsen F, Hansen L, Balslev D. Mining for associations between text and brain activation in a functional neuroimaging database. Neuroinformatics. 2004;2(4):369–80.

    Article  PubMed  Google Scholar 

  21. Megalooikonomou V, Ford J, Shen L, Makedon F, Saykin A. Data mining in brain imaging. Stat Methods Med Res. 2000;9(4):359–94.

    Article  CAS  PubMed  Google Scholar 

  22. Herland M, Khoshgoftaar TM, Randall W. A review of data mining using big data in health informatics. J Big Data 2014;1(1):1–35.

    Article  Google Scholar 

  23. Berry M, Linoff G. Data mining techniques: for marketing, sales and customer support. London: Wiley; 1997.

    Google Scholar 

  24. Berkhin P. A survey of clustering data mining techniques. In: Proceedings of grouping multidimensional data 2006; p. 25–71.

  25. Khattree R, Naik DN. Multivariate data reduction and discrimination with SAS Software. London: Wiley; 2000.

    Google Scholar 

  26. Hartigan JA. Direct clustering of a data matrix. Am Stat Assoc. 1972;67(337):123–9.

    Article  Google Scholar 

  27. Mirkin B. Mathematical classification and clustering. Dordrecht: Kluwer Academic Publishers; 1996.

    Book  Google Scholar 

  28. Diekmann V, Becker W, Jürgens R, Grözinger B, Kleiser B, Richter HP, Wollinsky KH. Localisation of epileptic foci with electric, magnetic and combined electronic models. Electroencephalogr Clin Neurophysiol. 1998;106:297–313.

    Article  CAS  PubMed  Google Scholar 

  29. Tanimoto TT. IBM Internal Report 17th November 1957.

  30. Huppert TJ, Diamond SG, Franceschini MA, Boas D. HomER: a review of time-series analysis methods for near infrared spectroscopy of the brain. Appl Opt. 2009;48(10):280–98.

    Article  Google Scholar 

  31. Elliot AJ, Maier MA, Meinhardt J, Moller AC, Friedman R. Color and psychological functioning: the effect of red on performance attainment. Exp Psychol. 2007;136(1):154–68.

    Article  Google Scholar 

  32. Melanie A. Emotional responses to color associated with an advertisement [PhD thesis]. Bowling Green State University; 2008.

  33. Bleicher S. Contemporary color theory and use. Clifton Park: Thomson/Delmar Learning; 2005.

    Google Scholar 

  34. Aslam MM. Are you selling the right colour? A cross-cultural review of colour as a marketing cue. Mark Commun. 2006;12(1):15–30.

    Article  Google Scholar 

  35. Guo J, Simmons WK, Herscovitch P, Martin A, Hall KD. Striatal dopamine D2-like receptor correlation patterns with human obesity and opportunistic eating behavior. Mol Psychiatry. 2014;19(10):1078–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wong B. Color psychology in design [Internet]. www.shine-21.com. Retrieved 12 June 2014.

  37. Brain Tumor Information [Internet]. www.Braintumor.org. Retrieved 10 May 2014.

  38. Lobes of the brain and their functions [Internet]. www.Buzzle.com. Retrieved 10 May 2014.

  39. http://www.buzzle.com/articles/right-brain-vs-left-brain.html. Retrieved 10 May 2014.

  40. Abdullah A, Hussain A. A new biclustering technique based on crossing minimization. Neurocomputing. 2006;69(16):1882–96.

    Article  Google Scholar 

  41. Krüger Gunnar, Glover Gary H. Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med. 2001;46(4):631–7.

    Article  PubMed  Google Scholar 

  42. Stroop J. Studies of interference in serial verbal reactions. Exp Psychol. 1935;18:643–62.

    Article  Google Scholar 

  43. Pulvermüller F, Hauk O. Category-specific conceptual processing of color and form in left fronto-temporal cortex. Cereb Cortex. 2006;16:1193–201.

    Article  PubMed  Google Scholar 

  44. T. Verstynen, R. Leckie, A. M. Weinstein, J. Jakicic, D. L. Rofey, K. I. Erickson. Altered cortico-basal ganglia connectivity with obesity predicts inefficient executive control processing. Poster, Soc Neurosci. 2012.

  45. Omaralkhamisi A, Ba-Brahem A, Abdullah A. A study of color as a marketing cue in Saudi Arabia. In: Proceedings of international conference on social sciences (ICSS) 2013; Izmir, Turkey, 2013.

  46. Rouw R, Scholte HS, Colizoli O. Brain areas involved in synaesthesia: a review. J Neuropsychol. 2011;5(2):214–42.

    Article  PubMed  Google Scholar 

  47. Cohen KR, Sagiv N, Linden DJ, Robertson LC, Elinger G, Henik A. When blue is larger than red: colors influence numerical cognition in synesthesia. J Cogn Neurosci. 2005;17(11):1766–73.

    Article  Google Scholar 

  48. Jagust W, Harvey D, Mungas D, Haan M. Central obesity and the aging brain. Arch Neurol. 2005;10:1545–8.

    Google Scholar 

  49. Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, Hua X, Leow AD, Toga AW, Thompson PM. Brain structure and obesity. Hum Brain Mapp. 2010;3:353–64.

    Google Scholar 

  50. Madsen SJ. Optical methods and instrumentation in brain imaging and therapy. Berlin: Springer; 2013. p. 82–3.

    Book  Google Scholar 

Download references

Acknowledgments

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)–King Abdulaziz City for Science and Technology—the Kingdom of Saudi Arabia—Award No. 14-MED1967-03. The authors also acknowledge with thanks Science and Technology Unit, King Abdulaziz University, for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Abdullah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, A., Khan, I.H., Basuhail, A. et al. A Novel Near-Infrared Spectroscopy Based Spatiotemporal Cognition Study of the Human Brain Using Clustering. Cogn Comput 7, 693–705 (2015). https://doi.org/10.1007/s12559-015-9358-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-015-9358-4

Keywords

Navigation