Skip to main content
Log in

How to Measure Cerebral Correlates of Emotions in Marketing Relevant Tasks

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Nowadays, there is a growing interest in measuring emotions through the estimation of cerebral variables. Several techniques and methods are used and debated in neuroscience. In such a context, the present paper provides examples of time-varying variables related to the estimation of emotional valence, arousal and Approach-Withdrawal behavior in marketing relevant contexts. In particular, we recorded electroencephalographic (EEG), galvanic skin response (GSR) and heart rate (HR) in a group of healthy subjects while they are watching different TV commercials. Specifically, results obtained in the Experiment 1 shows a significant increase of cortical power spectral density across left frontal areas in the alpha band and an enhance of cardiac activity during the observation of TV commercials that have been judged pleasant. In the Experiment 2, frontal EEG asymmetry, GSR and HR measurements are used to draw cognitive and emotional indices in order to track the subject’s internal state frame by frame of the commercial. A specific case study shows how the variations of the defined Approach-Withdrawal and emotional indices can distinguish the reactions of younger adults from the older ones during the observation of a funny spot. This technology could be of help for marketers to overcome some of the drawbacks of the standard marketing tools (e.g., interviews, focus groups) usually adopted during the analysis of the emotional perception of advertisements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Damásio AR. Descarte’s error: emotion, reason and the human brain. New York: Penguin Putnam; 1994.

    Google Scholar 

  2. Damasio, The feeling of what happens: body and emotion in the making of consciousness, Harcourt. 1999.

  3. Bargh JA, Chartrand TL. The unbearable automaticity of being. Am Psychol. 1999;54(7):462–79.

    Article  Google Scholar 

  4. Davidson RJ, Irwin W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3(1):11–21.

    Article  PubMed  Google Scholar 

  5. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. 1 ed. Oxford University Press, USA. 2004.

  6. Adolphs R. Cognitive neuroscience of human social behaviour. Nat Rev Neurosci. 2003;4(3):165–78.

    Article  CAS  PubMed  Google Scholar 

  7. Astolfi L, Toppi J, De Vico Fallani F, Vecchiato G, Cincotti F, Wilke CT, Yuan H, Mattia D, Salinari S, He B, Babiloni F. Imaging the social brain by simultaneous hyperscanning during subject interaction. IEEE Intell Syst. 2011;26(5):38–45.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cacioppo JT, Berntson GG, Taylor SE, Schacter DL. Foundations in social neuroscience illustrated edition. The MIT Press. 2002.

  9. Erk S, Spitzer M, Wunderlich AP, Galley L, Walter H. Cultural objects modulate reward circuitry. NeuroReport. 2002;13:2499–503.

    Article  PubMed  Google Scholar 

  10. Braeutigam S. Neuroeconomics–from neural systems to economic behavior. Brain Res Bull. 2005;67(5):355–60.

    Article  PubMed  Google Scholar 

  11. Knutson B, Scott R, Wimmer GE, Prelec D, Loewenstein G. Neural Predictors of Purchases. Neuron. 2007;53:147–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bruce AS, Bruce JM, Black WR, Lepping RJ, Henry JM, Cherry JB et al. Branding and a child’s brain: an fMRI study of neural responses to logos. SCAN. 2013.

  13. Braeutigam S, Rose SP, Swithenby SJ, Ambler T. The distributed neuronal systems supporting choice-making in real-life situations: differences between men and women when choosing groceries detected using magnetoencephalography. Eur J Neurosci. 2004;20(1):293–302.

    Article  PubMed  Google Scholar 

  14. Ioannides AA, Liu L, Theofilou D, Dammers J, Burne T, Ambler T, et al. Real time processing of affective and cognitive stimuli in the human brain extracted from MEG signals. Brain Topogr. 2000;13(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  15. Silberstein RB, Harris PG, Nield GA, Pipingas A. Frontal steady-state potential changes predict long-term recognition memory performance. Int J Psychophys. 2000;39(1):79–85.

    Article  CAS  Google Scholar 

  16. Astolfi L, Vecchiato G, De Vico Fallani F, Salinari S, Cincotti F, Aloise F et al. The track of brain activity during the observation of TV commercials with the high-resolution EEG technology. Comput Intell Neurosci. 2009:652078.

  17. Vecchiato G, Astolfi L, De Vico Fallani F, Toppi J, Aloise F, Bez F et al. On the Use of EEG or MEG brain imaging tools in neuromarketing research. Comput Intell Neurosci. 2011. doi:10.1155/2011/643489.

  18. Plassmann H, Ramsøy TZ, Milosavljevicet M. Branding the brain: a critical review and outlook. J Cons Psych. 2012.

  19. Zaltman G. how customers think: essential insights into the mind of the market 1 ed., Harvard Business Press. 2003.

  20. McDonald C. Is your advertising working? WARC. 2003.

  21. Franzen G, Bouwman M. The mental world of brands: mind, memory and brand success. NTC Publications; 2001.

  22. Ariely D, Berns G. Neuromarketing: the hope and hype of neuroimaging in business. Nat Rev Neurosci. 2010;11(4):284–92. doi:10.1038/nrn2795.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mauss IB, Robinson MD. Measures of emotion: a review. Cogn Emot. 2009;23(2):209–37.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hamann S. Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn Sci. 2012;16(9):458–66. doi:10.1016/j.tics.2012.07.006.

    Article  PubMed  Google Scholar 

  25. Davidson RJ. Neuropsychological perspectives on affective styles and their cognitive consequences. In: Power MJ, YorkDalgleish T, editors. Handbook of cognition and emotion. New. New York: Wiley; 1999. p. 103–23.

    Google Scholar 

  26. Lang PJ, Bradley MM, Cuthbert BN. Motivated attention: affect, activation, and action. In: Lang PJ, Simons RF, Balaban MT, editors. Attention and orienting: sensory and motivational processes. Mahwah, NJ: Lawrence Erlbaum Associates, Inc. 1997. p. 97–135.

  27. Russell JA, Barrett LF. Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. J Pers Soc Psychol. 1999;76(5):805–19.

    Article  CAS  PubMed  Google Scholar 

  28. Schneirla TC. An evolutionary and developmental theory of biphasic processes underlying approach and withdrawal. In: Jones MR, editor. Nebraska symposium on motivation, 1959. Lincoln, NE: University of Nebraska Press; 1959. p. 1–42.

    Google Scholar 

  29. Watson D, Wiese D, Vaidya J, Tellegen A. The two general activation systems of affect: structural findings, evolutionary considerations, and psychobiological evidence. J Pers Soc Psychol. 1999;76(5):820–38.

    Article  Google Scholar 

  30. Panksepp J. Neurologizing the psychology of affects: how appraisal-based constructivism and basic emotion theory can coexist. Perspect Psychol Sci. 2007;2(3):281–95.

    Article  Google Scholar 

  31. Ekman P. Facial expressions of emotion: new findings, new questions. Psychol Sci. 1992;3:34–8.

    Article  Google Scholar 

  32. Rachael JE, Garrod OGB, Schyns PG. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time. Curr Biol. 2014;24(2):187–92.

    Article  Google Scholar 

  33. Barrett LF. Solving the emotion paradox: categorization and the experience of emotion. Pers Soc Psychol Rev. 2006;10(1):20–46.

    Article  PubMed  Google Scholar 

  34. Haidt J, Keltner D. Culture and facial expression: open-ended methods find more expressions and a gradient of recognition. Cogn Emot. 1999;13(3):225–66.

    Article  Google Scholar 

  35. Carver CS. Self-regulation of action and affect. In: Baumeister RF, Vohs KD, editors. Handbook of self-regulation: research, theory, and applications. New York: Guilford Press. 2004. p. 13–39.

  36. Baumgartner T, Esslen M, Jancke L. From emotion perception to emotion experience: emotions evoked by pictures and classical music. Int J Psychophys. 2006; 60(1):34–4.3.

  37. Cacioppo JT, Berntson GG, Larsen JT, Poehlmann KM, Ito TA. The psychophysiology of emotion. In: Lewis M, Haviland-Jones JM, editors. The handbook of emotion. New York: Guildford Press. 2000.

  38. Mauss IB, Wilhelm FH, Gross JJ. Is there less to social anxiety than meets the eye? Emotion experience, expression, and bodily responding. Cogn Emot. 2004;18(5):631–62.

    Article  Google Scholar 

  39. Bradley MM, Lang PJ. Measuring emotion: behavior, feeling, and physiology. In: Lane RD, NadelL, editors. Cognitive neuroscience of emotion. New York: Oxford University Press; 2000b. p. 242–276.

  40. Kop WJ, Synowski SJ, Newell ME, Schmidt LA, Waldstein SR, Fox NA. Autonomic nervous system reactivity to positive and negative mood induction: the role of acute psychological responses and frontal electrocortical activity. Biol Psychol. 2011;86(3):230–8. doi:10.1016/j.biopsycho.2010.12.003.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Critchley HD. Electrodermal responses: what happens in the brain. Neuroscientist. 2002;8(2):132–42.

    Article  PubMed  Google Scholar 

  42. Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ. Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage. 2004;21(4):1232–41.

    Article  CAS  PubMed  Google Scholar 

  43. Baldaro B, Mazzetti M, Codispoti M, Tuozzi G, Bolzani R, Trombini G. Autonomic reactivity during viewing of an unpleasant film. Percept Mot Skills. 2001;93:797–805.

    Article  CAS  PubMed  Google Scholar 

  44. Palomba D, Sarlo M, Angrilli A, Mini A, Stegagno L. Cardiac responses associated with affective processing of unpleasant film stimuli. Int J Psychophysiol. 2000;36:45–57.

    Article  CAS  PubMed  Google Scholar 

  45. Steptoe A, Wardle J. Emotional fainting and the psychophysiologic response to blood and injury: autonomic mechanisms and coping strategies. Psychosom Med. 1988;50:402–17.

    Article  CAS  PubMed  Google Scholar 

  46. Kreibig SD, Wilhelm FH, Roth WT, Gross JJ. Cardiovascular, electrodermal, and respiratory response patterns to fear- and sadness-inducing films. Psychophysiology. 2007;44(5):787–806.

    Article  PubMed  Google Scholar 

  47. Barrett LF, Russell JA. Independence and bipolarity in the structure of current affect. J Pers Soc Psychol. 1998;74:967–84.

    Article  Google Scholar 

  48. Davidson RJ. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol Psychiatry. 2002;51(1):68–80.

    Article  PubMed  Google Scholar 

  49. Heller AS, Lapate RC, Mayer K, Davidson RJ. The face of negative affect: trial-by-trial corrugator responses to negative pictures are positively associated with amygdala and negatively associated with ventromedial prefrontal cortex activity. J Cogn Neurosci. 2014.

  50. Shenhav A, Greene JD. Integrative moral judgment: dissociating the roles of the amygdala and ventromedial prefrontal cortex. J Neurosci. 2014;34(13):4741–9.

    Article  CAS  PubMed  Google Scholar 

  51. Rabinak CA, Macnamara A, Kennedy AE, Angstadt M, Stein MB, Liberzon I, Phan KL. Focal and aberrant prefrontal engagement during emotion regulation in veterans with posttraumatic stress disorder. Depress Anxiety. 2014.

  52. Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry. 2014.

  53. Hooker CI, Benson TL, Gyurak A, Yin H, Tully LM, Lincoln SH. Neural activity to positive expressions predicts daily experience of schizophrenia-spectrum symptoms in adults with high social anhedonia. J Abnorm Psychol. 2014;123(1):190–204.

    Article  PubMed  Google Scholar 

  54. Lin CH, Tuan HP, Chiu YC. Medial frontal activity in brand-loyal consumers: a behavior and near-infrared ray study. J Neurosci Psychol Econ. 2010;3:59–73.

    Article  Google Scholar 

  55. Li X, Lu ZL, D’argembeau A, Ng M, Bechara A. The iowa gambling task in fMRI images. Hum Brain Mapp. 2010;31:410–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Santos JP, Seixas D, Brandão S, Moutinho L. Investigating the role of the ventromedial prefrontal cortex (vmPFC) in the assessment of brands. Front Neurosci. 2011; 5(77).

  57. Davidson RJ. What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol. 2004;67(1–2):219–33.

    Article  PubMed  Google Scholar 

  58. Davidson RJ. Affective style, psychopathology, and resilience: brain mechanisms and plasticity. Am Psychologist. 2000;55(11):1196–214.

    Article  CAS  Google Scholar 

  59. Sutton SK, Davidson RJ. Prefrontal brain asymmetry: a biological substrate of the behavioral approach and inhibition systems. Psychol Sci. 1997;8(3):204–10.

    Article  Google Scholar 

  60. Harmon-Jones E, Allen JJB. Anger and frontal brain activity: EEG asymmetry consistent with approach motivation despite negative affective valence. J Pers Soc Psychol. 1998;74(5):1310–6.

    Article  CAS  PubMed  Google Scholar 

  61. Harmon-Jones E, Lueck L, Fearn M, Harmon-Jones C. The effect of personal relevance and approach related action expectation on relative left frontal cortical activity. Psychol Sci. 2006;17(5):434–40.

    Article  PubMed  Google Scholar 

  62. Heller W, Schmidtke JI, Nitschke JB, Koven NS, Miller GA. States, traits, and symptoms: Investigating the neural correlates of emotion, personality, and psycho-pathology. In: Cervone D, Mischel W, editors. Advances in personality science. New York: Guilford Press; 2002. p. 106–26.

    Google Scholar 

  63. De Pascalis V, Cozzuto G, Caprara GV, Alessandri G. Relations among EEG-alpha asymmetry, BIS/BAS, and dispositional optimism. Biol Psychol. 2013;94(1):198–209.

    Article  PubMed  Google Scholar 

  64. Santesso DL, Segalowitz SJ, Ashbaugh AR, Antony MM, McCabe RE, Schmidt LA. Frontal EEG asymmetry and sensation seeking in young adults. Biol Psychol. 2008;78(2):164–72.

    Article  PubMed  Google Scholar 

  65. Urry HL, Nitschke JB, Dolski I, Jackson DC, Dalton KM, Mueller CJ, Rosenkranz MA, Ryff CD, Singer BH, Davidson RJ. Making a life worth living: neural correlates of well-being. Psychol Sci. 2004;15:367–72.

    Article  PubMed  Google Scholar 

  66. Pizzagalli DA, Sherwood RJ, Henriques JB, Davidson RJ. Frontal brain asymmetry and reward responsiveness. Psychol Sci. 2005;16:805–13.

    Article  PubMed  Google Scholar 

  67. Ohme R, Reykowska D, Wiener D, Choromanska A. Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J Neurosci Psychol Econ. 2009;2(1):21–31.

    Article  Google Scholar 

  68. Handy TC, Smilek D, Geiger L, Liu C, Schooler JW. ERP evidence for rapid hedonic evaluation of logos. J Cogn Neurosci. 2010;22(1):124–38.

    Article  PubMed  Google Scholar 

  69. Ding L, Lai Y, He B. Low-resolution brain electromagnetic tomography in a realistic geometry head model: a simulation study. Phys Med Biol. 2005;50:45–56.

    Article  PubMed  Google Scholar 

  70. He B, Wang Y, Wu D. Estimating cortical potentials from scalp EEGs in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Trans Biomed Eng. 1999;46:1264–8.

    Article  CAS  PubMed  Google Scholar 

  71. Nunez PL. Neocortical dynamics and human EEG rhythms. New York: Oxford University Press; 1995.

    Google Scholar 

  72. Babiloni C, Babiloni F, Carducci F, Cincotti F, Rosciarelli F, Rossini PM, et al. Mapping of early and late human somatosensory evoked brain potentials to phasic galvanic painful stimulation. Hum Brain Mapp. 2001;12(3):168–79.

    Article  CAS  PubMed  Google Scholar 

  73. De Vico Fallani F, Astolfi L, Cincotti F, Mattia D, Marciani MG, Salinari S, et al. Cortical functional connectivity networks in normal and spinal cord injured patients: evaluation by graph analysis, human brain mapping. 2007; 28(12):1334–46.

  74. Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Bianchi L, Marciani MG, et al. Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Trans Neural Syst Rehabil Eng. 2008; 16(6):522–31.

  75. Astolfi L, Cincotti F, Mattia D, Marciani MG, Baccala L, De Vico Fallani F et al. Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp. 2007; 28(2):143–57.

  76. Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Marciani MG, Bufalari S, et al. Imaging functional brain connectivity patterns from high-resolution EEG And fMRI via graph theory. Psychophys. 2007;44(6):880–93.

    Article  CAS  Google Scholar 

  77. Babiloni F, Cincotti F, Babiloni C, Carducci F, Basilisco A, Rossini PM et al. Estimation of the cortical functional connectivity with the multimodal integration of high resolution EEG and fMRI data by directed transfer function. Neuroimage. 2005; 1, 24(1):118–31.

  78. Welch PD. The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE T Audio Electroac. 1967; vol. AU-15, pp. 70–73.

  79. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 1999;29(2):169–95.

    Article  CAS  PubMed  Google Scholar 

  80. Zar JH. Biostatistical analysis. 5th ed. New Jersey: Prentice Hall; 2009.

    Google Scholar 

  81. Vecchiato G, De Vico Fallani F, Astolfi L, Toppi J, Cincotti F, Mattia D, Salinari S, Babiloni F. The issue of multiple univariate comparisons in the context of neuroelectric brain mapping: an application in a neuromarketing experiment. J Neurosci Methods. 2010;191(2):283–9.

    Article  CAS  PubMed  Google Scholar 

  82. Vecchiato G, Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Salinari S, Soranzo R, Babiloni F. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements. Brain Topogr Jun. 2010; 23(2):165–79.

  83. Schmidt S, Walach H. Electrodermal Activity. State of the art measurement and techniques for parapsychological purpose. J Parapsychol. 2000.

  84. Fowles DC, Christie MJ, Edelberg R, Grings WW, Lykken DT, Venables PH. Publication recommendations for electrodermal measurements. Psychophysiology. 1981;18:232–9.

    Article  CAS  PubMed  Google Scholar 

  85. Venables PH. Autonomic activity. Ann NY Acad Sci. 1991;620:191–207.

    Article  CAS  PubMed  Google Scholar 

  86. Boucsein W. Electrodermal activity 1 ed., Springer. 1992.

  87. Aftanas LI, Reva NV, Varlamov AA, Pavlov SV, Makhnev VP. Analysis of evoked EEG synchronization and desynchronization in conditions of emotional activation in humans: temporal and topographic characteristics. Neurosci Behav Physiol. 2004;34(8):859–67.

    Article  CAS  PubMed  Google Scholar 

  88. Balconi M, Brambilla E, Falbo L. BIS/BAS, cortical oscillations and coherence in response to emotional cues. Brain Res Bull. 2009;80(3):151–7.

    Article  PubMed  Google Scholar 

  89. Astolfi L, Vecchiato G, De Vico Fallani F, Salinari S, Cincotti F, Aloise F, Mattia D, Marciani MG, Bianchi L, Soranzo R, Babiloni F. The track of brain activity during the observation of TV commercials with the high-resolution EEG technology. Comput Intell Neurosci. 2009:652078. doi:10.1155/2009/652078. Epub 2009 Jun 22.

  90. De Vico Fallani F, da Fontoura Costa L, Aparecido Rodriguez L, Astolfi L, Vecchiato G, Toppi J, Borghini G, Cincotti F, Mattia D, Salinari S, Isabella R, Babiloni F. A graph-theoretical approach in brain functional networks possible implications in EEG studies. Nonlinear Biomedical Phys. 2010;4(Suppl 1):S8.

    Article  Google Scholar 

  91. Astolfi L, De Vico Fallani F, Cincotti F, Mattia D, Bianchi L, Marciani MG, Salinari S, Colosimo A, Tocci A, Soranzo R, Babiloni F. Neural basis for brain responses to TV commercials: a high-resolution EEG study. IEEE Trans Neural Syst Rehabil Eng. 2008;16(6):522–31. doi:10.1109/TNSRE.2008.2009784.

    Article  PubMed  Google Scholar 

  92. Toppi J, De Vico Fallani F, Vecchiato G, Maglione AG, Cincotti F, Mattia D, Salinari S, Babiloni F, Astolfi L. How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network. Comput Math Methods Med. 2012; 2012:130985.

  93. Toppi J, Babiloni F, Vecchiato G, Cincotti F, De Vico Fallani F, Mattia D, Salinari S, Astolfi L. Testing the asymptotic statistic for the assessment of the significance of partial directed coherence connectivity patterns. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5016–9. doi:10.1109/IEMBS.2011.6091243.

    CAS  PubMed  Google Scholar 

  94. Oliveri M, Babiloni C, Filippi MM, Caltagirone C, Babiloni F, Cicinelli P, et al. Influence of the supplementary motor area on primary motor cortex excitability during movements triggered by neutral or emotionally unpleasant visual cues. Exp Brain Res. 2003;149(2):214–21.

    CAS  PubMed  Google Scholar 

  95. Vecchiato G, Toppi J, Astolfi L, De Vico Fallani F, Cincotti F, Mattia D et al. Spectral EEG frontal asymmetries correlate with the experienced pleasantness of TV commercial advertisements. Med Biol Eng Comput. 2011; 49(5):579–83.

  96. Young C. Brain waves, picture sorts®, and branding moments. J.Advert. Res. 2002, 42–53.

Download references

Acknowledgments

This work was in part supported by a grant of Italian Minister of Research and University “PRIN 2012”, by EUROCONTROL on behalf of the SESAR Joint Undertaking in the context of SESAR Work Package E - NINA research project , by the Italian Minister of Foreign Affairs with a bilateral project between Italy and China “Neuropredictor” and by a project FILAS "BrainTrained" CUP F87I12002500007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Vecchiato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecchiato, G., Cherubino, P., Maglione, A.G. et al. How to Measure Cerebral Correlates of Emotions in Marketing Relevant Tasks. Cogn Comput 6, 856–871 (2014). https://doi.org/10.1007/s12559-014-9304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-014-9304-x

Keywords

Navigation