Skip to main content
Log in

Improved Path Integration Using a Modified Weight Combination Method

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Dynamic neural fields have been used extensively to model brain functions. These models coupled with the mechanisms of path integration have further been used to model idiothetic updates of hippocampal head and place representations, motor functions and have recently gained interest in the field of cognitive robotics. The sustained packet of activity of a neural field combined with a mechanism for moving this activity provides an elegant representation of state using a continuous attractor network. Path integration (PI) is dependent on the modulation of the collateral weights in the neural field. This modulation introduces an asymmetry in the activity packet, which causes a movement of the packet to a new location in the field. The following work provides an analysis of the PI mechanism, with respect to the speed of the packet movement and the robustness of the field under strong rotational inputs. This analysis illustrates challenges in controlling the activity packet size under strong rotational inputs, as well as a limited speed capability using the existing PI mechanism. As a result of this analysis, we propose a novel modification to the weight combination method to provide a higher speed capability and increased robustness of the field. The results of this proposed method are an increase in over two times the existing speed capability and a resistance of the field to break down under strong rotational inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Taylor J. Bubbles in the brain? Trends Cogn Sci. 2003;7:429–31.

    Article  PubMed  Google Scholar 

  2. Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organizing continuous attractor networks and motor function. Neural Netw. 2003;16:161–82.

    Article  CAS  PubMed  Google Scholar 

  3. Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor networks with multiple activity packets, and the representation of space. Neural Netw. 2004;17:5–27.

    Article  CAS  PubMed  Google Scholar 

  4. Amari SI. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol Cybern. 1977;27:77–87.

    Article  CAS  PubMed  Google Scholar 

  5. Petersen RS, Taylor JG. Reorganization of somato-sensory cortex after tactile training. In: Touretsky DS, editor. Advances in neural information processing, systems. Cambridge: MIT Press; 1996. p. 82–8.

    Google Scholar 

  6. Fellenz W, Taylor JG. Establishing retinotopy by lateral inhibition-type homogeneous neural fields. In: ESANN proceedings; 2000. p. 200–49.

  7. Taylor JG. Perception by neural networks. Neural Netw World. 1997;4:363–95.

    Google Scholar 

  8. Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: one-dimensional models of head direction cells. Netw Comput Neural Syst. 2002;13:217–42.

    Article  CAS  Google Scholar 

  9. Stringer SM, Rolls ET, Trappenberg TP, de Araujo IET. Self-organising continuous attractor networks and path integration: two-dimensional models of place cells. Netw Comput Neural Syst. 2002;13:429–46.

    Article  CAS  Google Scholar 

  10. Stringer SM, Rolls ET, Trappenberg TP. Self-organising continuous attractor network models of hippocampal spatial view cells. Neurobiol Learn Mem. 2005;83:79–92.

    Article  CAS  PubMed  Google Scholar 

  11. Trappenberg TP. Fundamentals of computational neuroscience. Oxford: Oxford University Press; 2002.

    Google Scholar 

  12. Taylor JG. The race for consciousness. Bradford Books: Cambridge; 2001.

    Google Scholar 

  13. Taylor JG, Alavi FN. A global competitive neural network. Biol Cybern. 1995;72:233–48.

    Article  CAS  PubMed  Google Scholar 

  14. Wilson HR, Cowan JD. Excititory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12:1–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Wilson HR, Cowan JD. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik. 1973;13:55–80.

    Article  CAS  PubMed  Google Scholar 

  16. Taylor JG. Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern. 2000;80:393–409.

    Article  Google Scholar 

  17. Doubrovinski K, Herrmann JM. Stability of localized patterns in neural fields. Neural Comput. 2009;21:1125–44.

    Article  PubMed  Google Scholar 

  18. Jancke D, Erlhagen W, Schoner G, Dinse H. Shorter latencies for motion trajectories than for flashes in population responses of a cat primary visual cortex. J Physiol. 2004;556(3):971–82.

    Article  CAS  PubMed  Google Scholar 

  19. Trappenberg TP, Dorris M, Munoz DP, Klein RM. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J Cogn Neurosci. 2001;13:256–71.

    Article  CAS  PubMed  Google Scholar 

  20. Rolls ET, Stringer SM, Trappenberg TP. A unified model of spatial and episodic memory. Proc R Soc. 2002;269:1087–93.

    Google Scholar 

  21. Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J Neurosci. 1996;16:2112–26.

    CAS  PubMed  Google Scholar 

  22. Milford MJ, Wyeth GF, Prasser D. RatSLAM: a hippocampal model for simulataneous localization and mapping. In: Proceedings of the IEEE international conference on robotics and automation; 2004. p. 403–8.

  23. Zibner SK, Faubel C, Iossifidis I, Schoner G. Dynamic neural fields as building blocks of a cortex-inspired architecture for robotic scene representation. IEEE Trans Auton Ment Dev. 2011;3:74–91.

    Article  Google Scholar 

  24. Erlhagen W, Bicho E. The dynamic neural field approach to cognitive robotics. J Neural Eng. 2006;3:36–54.

    Article  Google Scholar 

  25. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M. Path integration and the neural basis of the ‘cognitive map’. Nat Rev Neurosci. 2006;7:663–78.

    Article  CAS  PubMed  Google Scholar 

  26. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continous attractor neural network model. J Neurosci. 1997;17:5900–20.

    CAS  PubMed  Google Scholar 

  27. Skaggs WE, Knierim JJ, Kudrimoti HS, McNaughton BL. 1995 A model of the neural basis of the rats sense of direction In: Tesauro G, Touretzky DS, Leen TK, editors. Advances in neural information processing systems, vol 7. Cambridge: MIT Press; 1995. p. 173–80.

    Google Scholar 

  28. Xie X, Hahnloser RH, Seung HS. Double-ring network model of the head-direction system. Phys Rev E Stat Nonlin Soft Matter Phys. 2002;66:041902.

    Google Scholar 

  29. Milford MJ, Wiles J, Wyeth GF. Solving navigational uncertainty using grid cells on robots. PLoS Comput Biol. 2010;6(11):e1000995. doi:10.1371/journal.pcbi.1000995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Trappenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Connors, W.A., Trappenberg, T. Improved Path Integration Using a Modified Weight Combination Method. Cogn Comput 5, 295–306 (2013). https://doi.org/10.1007/s12559-013-9209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-013-9209-0

Keywords

Navigation