Skip to main content

Advertisement

Log in

Multilayer perceptron based deep neural network for early detection of coronary heart disease

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Coronary heart disease leads to a high mortality rate worldwide. Owing to delays in its detection, its treatment becomes challenging with little chances of recovery in many cases. An efficient, early-stage detection method is therefore urgently needed. Using the Framingham Heart Study Dataset, this study shows how data pre-processing via the multilayer perceptron following a deep learning approach will improve data quality when computing the likelihood of one having coronary heart disease. Apart from being highly efficient, our proposed approach results in highaccuracy of 96.50%. Finally, the paper discusses the rise in efficiency and accuracy achieved via use of deep learning techniques to enhance predictive outcomes v. traditional ones. The proposed study attempts to detect Coronary Heart Disease at an early stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mackay J, Mensah GA. The atlas of heart disease and stroke. World Health Organization; 2004.

  2. Alfred R, Yuto L, Haviluddin H, Chin KO, eds. Computational Science and Technology: 6th ICCST 2019, Kota Kinabalu, Malaysia, Springer Nature. August 2019;603:29-30.

  3. Arsenault BJ, Rana JS, Stroes ESG, Després J-P, Shah PK, Kastelein JJP, Khaw K-T. Beyond low-density lipoprotein cholesterol. J Am Coll Cardiol. 2009;55(1):35–41. https://doi.org/10.1016/j.jacc.2009.07.057.

    Article  Google Scholar 

  4. Hashim A, Bakhteri R, Hau YW. "Arrhythmia detection based on Hermite polynomial expansion and multilayer perceptron on system- on-chip implementation." ARPN J Engr Appl Sci. 2015;10:20.

    Google Scholar 

  5. Bendi VR, Boddu RSK. Performance Comparison of Classification Algorithms on Medical Datasets. EasyChair; 2020; No. 2322.

  6. Berkane M, Belhouchette K, Belhadef H. Emotion recognition approach using multilayer perceptron network and motion estimation. International Journal of Synthetic Emotions. 2019;10(1):38–53.

    Article  Google Scholar 

  7. Chandrasekar, P., Qian, K., Shahriar, H., & Bhattacharya, P. Improving the prediction accuracy of decision tree mining with data preprocessing. In 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 2017;2:481-484. IEEE.

  8. Chi YN, Chi J. Saltwater anglers toward marine environmental threats using multilayer perceptron neural network framework. International Journal of Data Science and Advanced Analytics. 2020;2(2):6–17.

    Google Scholar 

  9. Data Pre-processing in Data Mining. In: GeeksforGeeks. 2019. https://www.geeksforgeeks.org/data-preprocessing-in-data-mining. Accessed on 9 Sep 2019.

  10. de Heer EW, Palacios JE, Adèr HJ, van Marwijk HWJ, Tylee A, van der Feltz-Cornelis CM. Chest pain, depression and anxiety in coronary heart disease: Consequence or cause? A prospective clinical study in primary care. J Psychosom Res. 2020;129:109891. https://doi.org/10.1016/j.jpsychores.2019.109891.

    Article  Google Scholar 

  11. Dogan MV, Grumbach IM, Michaelson JJ, Philibert RA. Integrated genetic and epigenetic prediction of coronary heart disease in the Framingham Heart Study. PLoS ONE. 2018;13(1):e0190549. https://doi.org/10.1371/journal.pone.0190549.

    Article  Google Scholar 

  12. Eom J, Kim S, Zhang B. AptaCDSS-E: A classifier ensemble-based clinical decision support system for cardiovascular disease level prediction. Expert Syst Appl. 2008;34(4):2465–79. https://doi.org/10.1016/j.eswa.2007.04.015.

    Article  Google Scholar 

  13. Famili A, Shen W-M, Weber R, Simoudis E. Data preprocessing and intelligent data analysis. Intelligent Data Analysis. 1997;1(1):3–23. https://doi.org/10.3233/ida-1997-1102.

    Article  Google Scholar 

  14. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The American Journal of Medicine. 1977;62(5):707–14. https://doi.org/10.1016/0002-9343(77)90874-9.

    Article  Google Scholar 

  15. Goyal M, Goyal R, Venkatappa P, Reddy BL. Activation functions deep learning: Algorithms and applications 2019;1–30 https://doi.org/10.1007/978-3-030-31760-7_1

  16. Grover S, Bhartia S, Akshama Y, A., & K.R., S. Predicting severity of Parkinson’s disease using deep learning. Procedia Computer Science. 2018;132:1788–94. https://doi.org/10.1016/j.procs.2018.05.154.

    Article  Google Scholar 

  17. Haasenritter J, Stanze D, Widera G, Wilimzig C, Abu Hani M, Sönnichsen AC, Donner-Banzhoff N. Does the patient with chest pain have a coronary heart disease? Diagnostic value of single symptoms and signs – a meta-analysis. Croatian Medical Journal. 2012;53(5):432–41. https://doi.org/10.3325/cmj.2012.53.432.

    Article  Google Scholar 

  18. Hung AJ, Chen J, Gill IS. Automated performance metrics and machine learning algorithms to measure surgeon performance and anticipate clinical outcomes in robotic surgery. JAMA Surgery. 2018;153(8):770. https://doi.org/10.1001/jamasurg.2018.1512.

    Article  Google Scholar 

  19. Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R, Shahabi C. Big data and its technical challenges. Commun ACM. 2014;57(7):86–94. https://doi.org/10.1145/2611567.

    Article  Google Scholar 

  20. Jindal U, Gupta S, Jain V, Paprzycki M. Offline Handwritten Gurumukhi Character Recognition System Using Deep Learning. In Advances in Bioinformatics, Multimedia, and Electronics Circuits and Signals. Springer: Singapore; 2020 p. 121-133.

  21. Kantardzic M. Data mining: concepts, models, methods, and algorithms. John Wiley & Sons; 2011 Aug 16.

  22. Kuutti S, Bowden R, Jin Y, Barber P, Fallah S. A survey of deep learning applications to autonomous vehicle control. arXiv preprint arXiv:1912.10773. 2019 Dec 23.

  23. Lai Z, Deng H. Medical image classification based on deep features extracted by deep model and statistic feature fusion with multilayer perceptron‬. Computational Intelligence and Neuroscience. 2018;2018:1–13. https://doi.org/10.1155/2018/2061516.

    Article  Google Scholar 

  24. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  25. Lin W-C, Tsai C-F, Hu Y-H, Jhang J-S. Clustering-based undersampling in class-imbalanced data. Inf Sci. 2017;409–410:17–26. https://doi.org/10.1016/j.ins.2017.05.008.

    Article  Google Scholar 

  26. Liu T, Ding X, Chen Y, Chen H, Guo M. Predicting movie box-office revenues by exploiting large-scale social media content. Multimedia Tools and Applications. 2014;75(3):1509–28. https://doi.org/10.1007/s11042-014-2270-1.

    Article  Google Scholar 

  27. Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of deep neural network architectures and their applications. Neurocomputing. 2017;234:11–26. https://doi.org/10.1016/j.neucom.2016.12.038.

    Article  Google Scholar 

  28. Ma X, Yu H, Wang Y, Wang Y. Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE. 2015;10(3):e0119044. https://doi.org/10.1371/journal.pone.0119044.

    Article  Google Scholar 

  29. Martin Cichy R, Khosla A, Pantazis D, Oliva A. Dynamics of scene representations in the human brain revealed by magnetoencephalography and deep neural networks. NeuroImage. 2017;153:346–58. https://doi.org/10.1016/j.neuroimage.2016.03.063.

    Article  Google Scholar 

  30. Masih N, Ahuja S. Prediction of Heart Diseases Using Data Mining Techniques. International Journal of Big Data and Analytics in Healthcare. 2018;3(2):1–9. https://doi.org/10.4018/ijbdah.2018070101.

    Article  Google Scholar 

  31. Miikkulainen R, Liang J, Meyerson E, Rawal A, Fink D, Francon O, Raju B et al. Evolving deep neural networks. Artificial Intelligence in the Age of Neural Networks and Brain Computing, 2019;293-312. Academic Press.

  32. Wlodarczak P, Soar J, Ally M. Multimedia data mining using deep learning. In 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), IEEE. p. 190-196 7 Oct 2015

  33. Nahar J, Imam T, Tickle KS, Chen Y-PP. Association rule mining to detect factors which contribute to heart disease in males and females. Expert Syst Appl. 2013;40(4):1086–93. https://doi.org/10.1016/j.eswa.2012.08.028.

    Article  Google Scholar 

  34. Nazarzadeh M, Pinho-Gomes A-C, Smith Byrne K, Canoy D, Raimondi F, Ayala Solares JR, Rahimi K. Systolic blood pressure and risk of valvular heart disease. JAMA Cardiology. 2019;4(8):788. https://doi.org/10.1001/jamacardio.2019.2202.

    Article  Google Scholar 

  35. Nilashi M, Ibrahim O, Ahani A. Accuracy improvement for predicting Parkinson’s disease progression. Scientific Reports. 2016;6(1):1–18. https://doi.org/10.1038/srep34181.

    Article  Google Scholar 

  36. Niu J, An G, Gu Z, Li P, Liu Q, Bai R, Sun J, Du Q. Analysis of sensitivity and specificity: precise recognition of neutrophils during regeneration of contused skeletal muscle in rats. Forensic Sci Res. 2020. https://doi.org/10.1080/20961790.2020.1713432.

    Article  Google Scholar 

  37. Palaniappan S, Awang R. Intelligent heart disease prediction system using data mining techniques. IEEE/ACS International Conference on Computer Systems and Applications. 2008;2008:108–15. https://doi.org/10.1109/aiccsa.2008.4493524.

    Article  Google Scholar 

  38. Pandey A, Patel KV, Lavie CJ. Obesity, central adiposity, and fitness: Understanding the obesity paradox in the context of other cardiometabolic parameters. Mayo Clin Proc. 2018;93(6):676–8. https://doi.org/10.1016/j.mayocp.2018.04.015.

    Article  Google Scholar 

  39. Pandi A, Koch M, Voyvodic PL, Soudier P, Bonnet J, Kushwaha M, Faulon J-L. Metabolic perceptrons for neural computing in biological systems. Nature Communications. 2019;10(1):1–13. https://doi.org/10.1038/s41467-019-11889-0.

    Article  Google Scholar 

  40. Paynter NP, Balasubramanian R, Giulianini F, Wang DD, Tinker LF, Gopal S, Rexrode KM. Metabolic predictors of incident coronary heart disease in women. Circulation. 2018;137(8):841–53. https://doi.org/10.1161/circulationaha.117.029468.

    Article  Google Scholar 

  41. Pencina MJ, Navar AM, Wojdyla D, Sanchez RJ, Khan I, Elassal J, Sniderman AD. Quantifying importance of major risk factors for coronary heart disease. Circulation. 2019;139(13):1603–11. https://doi.org/10.1161/circulationaha.117.031855.

    Article  Google Scholar 

  42. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nature Biomedical Engineering. 2018;2(3):158–64. https://doi.org/10.1038/s41551-018-0195-0.

    Article  Google Scholar 

  43. Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: Longitudinal population study. BMJ. 1998;316(7137):1043–7. https://doi.org/10.1136/bmj.316.7137.1043.

    Article  Google Scholar 

  44. Prescott E, Hippe M, Schnohr P, Hein HO, Vestbo J. Smoking and risk of myocardial infarction in women and men: Longitudinal population study. 1998. https://doi.org/10.1136/bmj.316.7137.1043

  45. Schmidhuber J. Deep learning in neural networks: An overview. Neural Networks. 2015;61:85–117. https://doi.org/10.1016/j.neunet.2014.09.003.

    Article  Google Scholar 

  46. Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–10. https://doi.org/10.1038/s41586-019-1923-7.

    Article  Google Scholar 

  47. Singh MP, Chaturvedi S, Shudhalwar DD. Multilayer neural network technique for parsing the natural language sentences. International Journal of Artificial Intelligence and Machine Learning. 2019;9(2):22–38. https://doi.org/10.4018/ijaiml.2019070102.

    Article  Google Scholar 

  48. Singh R, Srivastava S. Stock prediction using deep learning. Multimedia Tools and Applications. 2016;76(18):18569–84. https://doi.org/10.1007/s11042-016-4159-7.

    Article  Google Scholar 

  49. Son C-S, Kim Y-N, Kim H-S, Park H-S, Kim M-S. Decision-making model for early diagnosis of congestive heart failure using rough set and decision tree approaches. J Biomed Inform. 2012;45(5):999–1008. https://doi.org/10.1016/j.jbi.2012.04.013.

    Article  Google Scholar 

  50. Tajmiri S, Azimi E, Hosseini MR, Azimi Y. Evolving multilayer perceptron, and factorial design for modelling and optimization of dye decomposition by bio-synthetized nano CdS-diatomite composite. Environ Res. 2020;182:108997. https://doi.org/10.1016/j.envres.2019.108997.

    Article  Google Scholar 

  51. Tang J, Deng C, Huang G-B. Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems. 2016;27(4):809–21. https://doi.org/10.1109/tnnls.2015.2424995.

    Article  MathSciNet  Google Scholar 

  52. Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, Kittler H. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: An open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47. https://doi.org/10.1016/s1470-2045(19)30333-x.

    Article  Google Scholar 

  53. Wang J, Ma Y, Zhang L, Gao RX, Wu D. Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems. 2018;48:144–56. https://doi.org/10.1016/j.jmsy.2018.01.003.

    Article  Google Scholar 

  54. Wang S-H, Zhang Y, Li Y-J, Jia W-J, Liu F-Y, Yang M-M, Zhang Y-D. Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimedia Tools and Applications. 2016;77(9):10393–417. https://doi.org/10.1007/s11042-016-4222-4.

    Article  Google Scholar 

  55. Whitaker K. Earlier diagnosis: The importance of cancer symptoms. Lancet Oncol. 2020;21(1):6–8. https://doi.org/10.1016/s1470-2045(19)30658-8.

    Article  Google Scholar 

  56. Whitaker K. Earlier diagnosis: the importance of cancer symptoms. The Lancet Oncology. 2020;21(1):6-8.

    Article  Google Scholar 

  57. Wlodarczak P, Soar J, Ally M. Multimedia data mining using deep learning. Fifth International Conference on Digital Information Processing and Communications (ICDIPC). 2015;2015:190–6. https://doi.org/10.1109/icdipc.2015.7323027.

    Article  Google Scholar 

  58. Wlodarczak P, Jeffrey S, Mustafa A. Multimedia data mining using deep learning. In 2015 Fifth International Conference on Digital Information Processing and Communications (ICDIPC), IEEE: 2015;190-196.

  59. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing [review article]. IEEE Comput Intell Mag. 2018;13(3):55–75. https://doi.org/10.1109/mci.2018.2840738.

    Article  Google Scholar 

  60. Wolterink JM, Tim L, Max AV, Ivana I. Dilated convolutional neural networks for cardiovascular MR segmentation in congenital heart disease. In Reconstruction, segmentation, and analysis of medical images. Springer: Cham; 2016. p. 95-102.

  61. Zoughi T, Homayounpour MM, Deypir M. Adaptive windows multiple deep residual networks for speech recognition. Expert Syst Appl. 2020;139:112840. https://doi.org/10.1016/j.eswa.2019.112840.

    Article  Google Scholar 

  62. Zyriax B-C, Vettorazzi E, Hamuda A, Windler E. Interaction of smoking and dietary habits modifying the risk of coronary heart disease in women: Results from a case–control study. Eur J Clin Nutr. 2018;72(12):1673–81. https://doi.org/10.1038/s41430-018-0099-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy Masih.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masih, N., Naz, H. & Ahuja, S. Multilayer perceptron based deep neural network for early detection of coronary heart disease. Health Technol. 11, 127–138 (2021). https://doi.org/10.1007/s12553-020-00509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-020-00509-3

Keywords

Navigation