Skip to main content

Advertisement

Log in

Studying viruses using solution X-ray scattering

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Viruses have been of interest to mankind since their discovery as small infectious agents in the nineteenth century. Because many viruses cause diseases to humans and agriculture, they were rigorously studied for biological and medical purposes. Viruses have remarkable properties such as the symmetry and self-assembly of their protein envelope, maturation into infectious virions, structural stability, and disassembly. Solution X-ray scattering can probe structures and reactions in solutions, down to subnanometer spatial resolution and millisecond temporal resolution. It probes the bulk solution and reveals the average shape and average mass of particles in solution and can be used to study kinetics and thermodynamics of viruses at different stages of their life cycle. Here we review recent work that demonstrates the capabilities of solution X-ray scattering to study in vitro the viral life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aramayo R, Merigoux C, Larquet E, Bron P, Perez J, Dumas C, Vachette P, Boisset N (2005) Divalent ion-dependent swelling of tomato bushy stunt virus: a multi-approach study. Biochimica et Biophysica Acta (BBA)-General Subjects 1724(3):345–354

    CAS  Google Scholar 

  • Asor R, Ben-nun Shaul O, Oppenheim A, Raviv U (2017) Crystallization, reentrant melting, and resolubilization of virus nanoparticles. ACS nano 11(10):9814–9824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asor R, Khaykelson D, Ben-nun Shaul O, Oppenheim A, Raviv U (2019a) Effect of calcium ions and disulfide bonds on swelling of virus particles. ACS omega 4(1):58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asor R, Selzer L, Schlicksup CJ, Zhao Z, Zlotnick A, Raviv U (2019b) Assembly reactions of hepatitis B capsid protein into capsid nanoparticles follow a narrow path through a complex reaction landscape. ACS nano 13(7):7610–7626

    CAS  PubMed  Google Scholar 

  • Asor R, Khaykelsom D, Ben-nun-Shaul O, Levi-Kalisman Y, Oppenheim A, Raviv U (2020) pH Stability and Disassembly Mechanism of Wild-Type Simian Virus 40. Soft Matter

  • Bauer D, Li D, Huffman J, Homa F, Wilson K, Leavitt J, Casjens S, Baines J, Evilevitch A (2015) Exploring the balance between DNA pressure and capsid stability in herpesviruses and phages. J Virol 89 (18):9288–9298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boldon L, Laliberte F, Liu L (2015) Review of the fundamental theories behind small angle x-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Reviews 6(1):25661

    PubMed  Google Scholar 

  • Božič AL, Šiber A, Podgornik R (2012) How simple can a model of an empty viral capsid be? Charge distributions in viral capsids. J Biol Phys 38(4):657–671

    Google Scholar 

  • Canady MA, Tsuruta H, Johnson JE (2001) Analysis of rapid, large-scale protein quaternary structural changes: time-resolved x-ray solution scattering of Nudaurelia capensis ω virus (nωv) maturation. J Mol Biol 311(4):803–814

    CAS  PubMed  Google Scholar 

  • Casini GL, Graham D, Heine D, Garcea RL, Wu DT (2004) In vitro papillomavirus capsid assembly analyzed by light scattering. Virology 325(2):320–327

    CAS  PubMed  Google Scholar 

  • Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. In: Cold Spring Harbor symposia on quantitative biology, vol 27. Cold Spring Harbor Laboratory Press, pp 1–24

  • Chevreuil M, Law-Hine D, Chen J, Bressanelli S, Combet S, Constantin D, Degrouard J, Möller J, Zeghal M, Tresset G (2018) Nonequilibrium self-assembly dynamics of icosahedral viral capsids packaging genome or polyelectrolyte. Nat Commun 9(1):3071

    PubMed  PubMed Central  Google Scholar 

  • Endres D, Miyahara M, Moisant P, Zlotnick A (2005) A reaction landscape identifies the intermediates critical for self-assembly of virus capsids and other polyhedral structures. Protein Science 14(6):1518–1525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM (2003) Osmotic pressure inhibition of DNA ejection from phage. Proc Natl Acad Sci 100(16):9292–9295

    CAS  PubMed  Google Scholar 

  • Fischlechner M, Donath E (2007) Viruses as building blocks for materials and devices. Angewandte Chemie International Edition 46(18):3184–3193

    CAS  PubMed  Google Scholar 

  • Fox JM, Wang G, Speir JA, Olson NH, Johnson JE, Baker TS, Young MJ (1998) Comparison of the native CCMV virion within vitroassembled CCMV virions by cryoelectron microscopy and image reconstruction. Virology 244(1):212–218

    CAS  PubMed  Google Scholar 

  • Garoff H, Hewson R, Opstelten DJE (1998) Virus maturation by budding. Microbiol Mol Biol Rev 62 (4):1171–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Ringel I, Raviv U (2016) Reciprocal grids: a hierarchical algorithm for computing solution x-ray scattering curves from supramolecular complexes at high resolution. J Chem Inf Model 56(8):1518–1527

    CAS  PubMed  Google Scholar 

  • Ginsburg A, Ben-Nun T, Asor R, Shemesh A, Fink L, Tekoah R, Levartovsky Y, Khaykelson D, Dharan R, Fellig A, Raviv U (2019) D+: software for high-resolution hierarchical modeling of solution x-ray scattering from complex structures. J Appl Cryst 52(1):219–242

    CAS  Google Scholar 

  • Guilbaud S, Salomé L, Destainville N, Manghi M, Tardin C (2019) Dependence of DNA persistence length on ionic strength and ion type. Phys Rev Lett 122(2):028102

    CAS  PubMed  Google Scholar 

  • Hagan MF (2014) Modeling viral capsid assembly. Adv Chem Phys 155:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue T, Moore P, Tsai B (2011) How viruses and toxins disassemble to enter host cells. Annu Rev Microbiol 65:287–305

    CAS  PubMed  Google Scholar 

  • Kay LE (1986) WM Stanley’s crystallization of the tobacco mosaic virus, 1930-1940. Isis 77(3):450–472

    CAS  PubMed  Google Scholar 

  • Keen EC (2015) A century of phage research: bacteriophages and the shaping of modern biology. Bioessays 37(1):6–9

    PubMed  PubMed Central  Google Scholar 

  • Kindt J, Tzlil S, Ben-Shaul A, Gelbart WM (2001) DNA packaging and ejection forces in bacteriophage. Proc Nat Acad Sci 98(24):13671–13674

    CAS  PubMed  Google Scholar 

  • Kler S, Asor R, Li C, Ginsburg A, Harries D, Oppenheim A, Zlotnick A, Raviv U (2012) RNA encapsidation by SV40-derived nanoparticles follows a rapid two-state mechanism. J Am Chem Soc 134(21):8823–8830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kondylis P, Schlicksup CJ, Zlotnick A, Jacobson SC (2019) Analytical techniques to characterize the structure, properties, and assembly of virus capsids. Analytical Chemistry 91(1):622–636. https://doi.org/10.1021/acs.analchem.8b04824

    Article  CAS  PubMed  Google Scholar 

  • Law-Hine D, Sahoo AK, Bailleux V, Zeghal M, Prevost S, Maiti PK, Bressanelli S, Constantin D, Tresset G (2015) Reconstruction of the disassembly pathway of an icosahedral viral capsid and shape determination of two successive intermediates. J Phys Chem Lett 6(17):3471–3476

    CAS  PubMed  Google Scholar 

  • Lee KK, Gan L, Tsuruta H, Hendrix RW, Duda RL, Johnson JE (2004) Evidence that a local refolding event triggers maturation of HK97 bacteriophage capsid. J Mol Biol 340(3):419–433

    CAS  PubMed  Google Scholar 

  • Li T, Ye B, Niu Z, Thompson P, Seifert S, Lee B, Wang Q (2009) Closed-packed colloidal assemblies from icosahedral plant virus and polymer. Chem Mater 21(6):1046–1050

    CAS  Google Scholar 

  • Li T, Senesi AJ, Lee B (2016) Small angle x-ray scattering for nanoparticle research. Chem Rev 116 (18):11128–11180

    CAS  PubMed  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World Journal of Gastrointestinal Pharmacology and Therapeutics 8(3):162

    PubMed  PubMed Central  Google Scholar 

  • Liu T, Sae-Ueng U, Li D, Lander GC, Zuo X, Jönsson B, Rau D, Shefer I, Evilevitch A (2014) Solid-to-fluid–like DNA transition in viruses facilitates infection. Proc Nat Acad Sci 111(41):14675–14680

    CAS  PubMed  Google Scholar 

  • Lundstrom K (2018) Viral vectors in gene therapy. Diseases 6(2):42

    PubMed Central  Google Scholar 

  • Lustig A, Levine AJ (1992) One hundred years of virology. J Virol 66(8):4629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutomski CA, Lyktey NA, Pierson EE, Zhao Z, Zlotnick A, Jarrold MF (2018) Multiple pathways in capsid assembly. J Am Chem Soc 140(17):5784–5790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lwoff A (1957) The concept of virus. Microbiology 17(2):239–253

    CAS  Google Scholar 

  • Manning GS (2006) The persistence length of dna is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophys J 91(10):3607–3616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531(1-2):65–79

    CAS  PubMed  Google Scholar 

  • Matsui T, Tsuruta H, Johnson JE (2010) Balanced electrostatic and structural forces guide the large conformational change associated with maturation of T = 4 virus. Biophys J 98(7):1337–1343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel J, Ivanovska I, Gibbons M, Klug W, Knobler C, Wuite G, Schmidt C (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci 103(16):6184–6189

    CAS  PubMed  Google Scholar 

  • Moreira D, López-García P (2009) Ten reasons to exclude viruses from the tree of life. Nat Rev Microbiol 7(4):306

    CAS  PubMed  Google Scholar 

  • Niu Z, Bruckman M, Kotakadi VS, He J, Emrick T, Russell TP, Yang L, Wang Q (2006) Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem Commun (28):3019–3021

  • Nurmemmedov E, Castelnovo M, Catalano CE, Evilevitch A (2007) Biophysics of viral infectivity: matching genome length with capsid size. Q Rev Biophys 40(4):327–356

    CAS  PubMed  Google Scholar 

  • Perlmutter JD, Hagan MF (2015) Mechanisms of virus assembly. Annual Rev Phys Chem 66:217–239

    CAS  Google Scholar 

  • Porterfield JZ, Dhason MS, Loeb DD, Nassal M, Stray SJ, Zlotnick A (2010) Full-length hepatitis B virus core protein packages viral and heterologous RNA with similarly high levels of cooperativity. J Virol 84(14):7174–7184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prevelige PE Jr, Thomas D, King J (1993) Nucleation and growth phases in the polymerization of coat and scaffolding subunits into icosahedral procapsid shells. Biophys J 64(3):824–835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu X, Rau DC, Parsegian VA, Fang LT, Knobler CM, Gelbart WM (2011) Salt-dependent DNA-DNA spacings in intact bacteriophage λ reflect relative importance of DNA self-repulsion and bending energies. Phys Rev Lett 106(2):028102

    PubMed  PubMed Central  Google Scholar 

  • Rayaprolu V, Moore A, Wang JCY, Goh BC, Perilla JR, Zlotnick A, Mukhopadhyay S (2017) Length of encapsidated cargo impacts stability and structure of in vitro assembled alphavirus core-like particles. J Phys Condens Matter 29(48):484003

    PubMed  Google Scholar 

  • van Rosmalen MG, Li C, Zlotnick A, Wuite GJ, Roos WH (2018) Effect of dsDNA on the assembly pathway and mechanical strength of SV40 VP1 virus-like particles. Biophys J 115(9):1656–1665

    PubMed  PubMed Central  Google Scholar 

  • van der Schoot P, Zandi R (2007) Kinetic theory of virus capsid assembly. Phys Biol 4(4):296

    PubMed  Google Scholar 

  • Singh S, Zlotnick A (2003) Observed hysteresis of virus capsid disassembly is implicit in kinetic models of assembly. J Biol Chem 278(20):18249–18255

    CAS  PubMed  Google Scholar 

  • Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by x-ray crystallography and cryo-electron microscopy. Structure 3(1):63–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stehle T, Gamblin SJ, Yan Y, Harrison SC (1996) The structure of simian virus 40 refined at 3.1 Å resolution. Structure 4(2):165–182

    CAS  PubMed  Google Scholar 

  • Steven AC, Heymann JB, Cheng N, Trus BL, Conway JF (2005) Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity. Current Opinion in Structural Biology 15(2):227–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veesler D, Johnson JE (2012) Virus maturation. Annual Rev Biophys 41:473–496

    CAS  Google Scholar 

  • Vega-Acosta J, Cadena-Nava R, Gelbart W, Knobler C, Ruiz-García J (2014) Electrophoretic mobilities of a viral capsid, its capsid protein, and their relation to viral assembly. J Phys Chem B 118(8):1984–1989

    CAS  PubMed  Google Scholar 

  • Villarreal LP (2004) Are viruses alive? Scientific American-American Edition- 291:100–105

    Google Scholar 

  • Wen AM, Steinmetz NF (2016) Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 45(15):4074–4126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zwanzig R, Szabo A, Bagchi B (1992) Levinthal’s paradox. Proc Natl Acad Sci 89(1):20–22

    CAS  PubMed  Google Scholar 

Download references

Funding

This work received financial support from the NIH, grants numbers R01AI118933 and RO1GM108021. D.K. received fellowship support from the Nano Center of The Hebrew University of Jerusalem and the Rudin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daniel Khaykelson or Uri Raviv.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaykelson, D., Raviv, U. Studying viruses using solution X-ray scattering. Biophys Rev 12, 41–48 (2020). https://doi.org/10.1007/s12551-020-00617-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00617-4

Keywords

Navigation