Skip to main content

Advertisement

Log in

Biophysical nanotools for single-molecule dynamics

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The focus of the cell biology field is now shifting from characterizing cellular activities to organelle and molecular behaviors. This process accompanies the development of new biophysical visualization techniques that offer high spatial and temporal resolutions with ultra-sensitivity and low cell toxicity. They allow the biology research community to observe dynamic behaviors from scales of single molecules, organelles, cells to organoids, and even live animal tissues. In this review, we summarize these biophysical techniques into two major classes: the mechanical nanotools like dynamic force spectroscopy (DFS) and the optical nanotools like single-molecule and super-resolution microscopy. We also discuss their applications in elucidating molecular dynamics and functionally mapping of interactions between inter-cellular networks and intra-cellular components, which is key to understanding cellular processes such as adhesion, trafficking, inheritance, and division.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alieva, N.O., Efremov, A.K., Hu, S., Oh, D., Chen, Z., Natarajan, M., Ong, H.T., Jegou, A., Romet-Lemonne, G., Groves, J.T., et al. (2017). Force dependence of filopodia adhesion: involvement of myosin II and formins. bioRxiv

  • Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V, Stefani FD, Elf J, Hell SW (2017) Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–612

    Article  CAS  Google Scholar 

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    Article  CAS  Google Scholar 

  • Butera, D., Passam, F., Ju, L., Cook, K.M., Woon, H., Aponte-Santamaria, C., Gardiner, E., Davis, A.K., Murphy, D.A., Bronowska, A., et al. (2018). Autoregulation of von Willebrand factor function by a disulfide bond switch. Sci Adv 4, eaaq1477

    Article  Google Scholar 

  • Chaudhuri O, Parekh SH, Lam WA, Fletcher DA (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Meth 6:383–387

    Article  CAS  Google Scholar 

  • Chen W, Lou J, Evans EA, Zhu C (2012) Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J Cell Biol 199:497–512

    Article  CAS  Google Scholar 

  • Chen BC, Legant WR, Wang K, Shao L, Milkie DE, Davidson MW, Janetopoulos C, Wu XS, Hammer JA 3rd, Liu Z et al (2014) Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998

    Article  Google Scholar 

  • Chen Y, Liu B, Ju L, Hong J, Ji Q, Chen W, Zhu C (2015) Fluorescence biomembrane force probe: concurrent quantitation of receptor-ligand kinetics and binding-induced intracellular signaling on a single cell. J Vis Exp. https://doi.org/10.3791/52975

  • Chen Y, Ju L, Rushdi M, Ge C, Zhu C (2017a) Receptor-mediated cell mechanosensing. Mol Biol Cell 28:3134–3155

    Article  CAS  Google Scholar 

  • Chen Y, Lee H, Tong H, Schwartz M, Zhu C (2017b) Force regulated conformational change of integrin alphaVbeta3. Matrix Biol 60-61:70–85

    Article  CAS  Google Scholar 

  • Chen C, Wang F, Wen S, Su PQ, Wu MCL, Liu Y, Wang B, Li D, Shan X, Kianinia M, Aharonovich I, Toth M, Jackson SP, Xi P, Jin D (2018a) Multi-photon near-infrared emission saturation nanoscopy using upconversion nanoparticles. Nat Commun. https://doi.org/10.1038/s41467-018-05842-w

  • Chen Y, Su QP, Sun Y, Yu L (2018b) Visualizing autophagic lysosome reformation in cells using in vitro reconstitution systems. Current Protocols Cell Biology 78:11.24.11–11.24.15

    Article  Google Scholar 

  • Chmyrov A, Keller J, Grotjohann T, Ratz M, d'Este E, Jakobs S, Eggeling C, Hell SW (2013) Nanoscopy with more than 100,000 'doughnuts'. Nat Methods 10:737–740

    Article  CAS  Google Scholar 

  • Das DK, Feng Y, Mallis RJ, Li X, Keskin DB, Hussey RE, Brady SK, Wang JH, Wagner G, Reinherz EL et al (2015) Force-dependent transition in the T-cell receptor beta-subunit allosterically regulates peptide discrimination and pMHC bond lifetime. Proc Natl Acad Sci U S A 112:1517–1522

    Article  CAS  Google Scholar 

  • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641

    Article  Google Scholar 

  • Deng W, Xu Y, Chen W, Paul DS, Syed AK, Dragovich MA, Liang X, Zakas P, Berndt MC, Di Paola J et al (2016) Platelet clearance via shear-induced unfolding of a membrane mechanoreceptor. Nat Commun 7:12863

    Article  CAS  Google Scholar 

  • Du W, Su QP, Chen Y, Zhu Y, Jiang D, Rong Y, Zhang S, Zhang Y, Ren H, Zhang C et al (2016) Kinesin 1 drives autolysosome tubulation. Dev Cell 37:326–336

    Article  CAS  Google Scholar 

  • Dulin D, Berghuis BA, Depken M, Dekker NH (2015) Untangling reaction pathways through modern approaches to high-throughput single-molecule force-spectroscopy experiments. Curr Opin Struct Biol 34:116–122

    Article  CAS  Google Scholar 

  • Eisenstein M (2018) Organoids: the body builders. Nat Methods 15:19

    Article  CAS  Google Scholar 

  • Evans E, Leung A, Heinrich V, Zhu C (2004) Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc Natl Acad Sci 101:11281–11286

    Article  CAS  Google Scholar 

  • Favre-Bulle IA, Stilgoe AB, Rubinsztein-Dunlop H, Scott EK (2017) Optical trapping of otoliths drives vestibular behaviours in larval zebrafish. Nat Commun 8:630

    Article  Google Scholar 

  • Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ (2017) Mechanosensing drives acuity of alphabeta T-cell recognition. Proc Natl Acad Sci U S A 114:E8204–E8213

    Article  CAS  Google Scholar 

  • Fiore VF, Ju L, Chen Y, Zhu C, Barker TH (2014) Dynamic catch of a Thy-1–α5β1+syndecan-4 trimolecular complex. Nat Commun 5:4886

    Article  CAS  Google Scholar 

  • Francis EA, Heinrich V (2018) Extension of chemotactic pseudopods by nonadherent human neutrophils does not require or cause calcium bursts. Sci Signal 11(521):eaal4289

    Article  Google Scholar 

  • Fu H, Jiang Y, Yang D, Scheiflinger F, Wong WP, Springer TA (2017) Flow-induced elongation of von Willebrand factor precedes tension-dependent activation. Nat Commun 8:324

    Article  Google Scholar 

  • Ghodke H, Caldas VE, Punter CM, van Oijen AM, Robinson A (2016) Single-molecule specific mislocalization of red fluorescent proteins in live Escherichia coli. Biophys J 111:25–27

    Article  CAS  Google Scholar 

  • Guan R, Zhang L, Su QP, Mickolajczyk KJ, Chen GY, Hancock WO, Sun Y, Zhao Y, Chen Z (2017) Crystal structure of Zen4 in the apo state reveals a missing conformation of kinesin. Nat Commun 8:14951

    Article  CAS  Google Scholar 

  • Guo Q, Bishop CJ, Meyer RA, Wilson DR, Olasov L, Schlesinger DE, Mather PT, Spicer JB, Elisseeff JH, Green JJ (2018) Entanglement-based thermoplastic shape memory polymeric particles with photothermal actuation for biomedical applications. ACS Appl Mater Interfaces 10:13333–13341

    Article  CAS  Google Scholar 

  • Hafi N, Grunwald M, van den Heuvel LS, Aspelmeier T, Chen JH, Zagrebelsky M, Schutte OM, Steinem C, Korte M, Munk A et al (2014) Fluorescence nanoscopy by polarization modulation and polarization angle narrowing. Nat Methods 11:579–584

    Article  CAS  Google Scholar 

  • Heller I, Sitters G, Broekmans OD, Farge G, Menges C, Wende W, Hell SW, Peterman EJ, Wuite GJ (2013) STED nanoscopy combined with optical tweezers reveals protein dynamics on densely covered DNA. Nat Methods 10:910–916

    Article  CAS  Google Scholar 

  • Hu KH, Butte MJ (2016) T cell activation requires force generation. J Cell Biol 213:535–542

    Article  CAS  Google Scholar 

  • Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:1047–1058

    Article  CAS  Google Scholar 

  • Huang X, Fan J, Li L, Liu H, Wu R, Wu Y, Wei L, Mao H, Lal A, Xi P et al (2018) Fast, long-term, super-resolution imaging with Hessian structured illumination microscopy. Nat Biotechnol 36(5):451

    Article  CAS  Google Scholar 

  • Husson J, Chemin K, Bohineust A, Hivroz C, Henry N (2011) Force generation upon T cell receptor engagement. PLoS One 6:e19680

    Article  CAS  Google Scholar 

  • Jia JM, Chowdary PD, Gao X, Ci B, Li W, Mulgaonkar A, Plautz EJ, Hassan G, Kumar A, Stowe AM et al (2017) Control of cerebral ischemia with magnetic nanoparticles. Nat Methods 14:160–166

    Article  CAS  Google Scholar 

  • Jiang N, Huang J, Edwards LJ, Liu B, Zhang Y, Beal CD, Evavold BD, Zhu C (2011) Two-stage cooperative T cell receptor-peptide major histocompatibility complex-CD8 trimolecular interactions amplify antigen discrimination. Immunity 34:13–23

    Article  CAS  Google Scholar 

  • Ju L, Dong J-F, Cruz MA, Zhu C (2013) The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J Biol Chem 288:32289–32301

    Article  CAS  Google Scholar 

  • Ju L, Lou J, Chen Y, Li Z, Zhu C (2015) Force-induced unfolding of leucine-rich repeats of glycoprotein Ibα strengthens ligand interaction. Biophys J 109:1781–1784

    Article  CAS  Google Scholar 

  • Ju L, Chen Y, Xue L, Du X, Zhu C (2016) Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. ELife 5:e15447

  • Ju L, Chen Y, Li K, Yuan Z, Liu B, Jackson SP, Zhu C (2017a) Dual biomembrane force probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. Sci Rep 7:14185

    Article  Google Scholar 

  • Ju, L., Chen, Y., Rushdi, M.N., Chen, W., and Zhu, C. (2017b). Two-dimensional analysis of cross-junctional molecular interaction by force probes. In methods Mol Biol: the immune synapse, M.L. Dustin, ed. (springer nature), pp. 231-258

    Chapter  Google Scholar 

  • Ju L, McFadyen JD, Al-Daher S, Alwis I, Chen Y, Tonnesen LL, Maiocchi S, Coulter B, Calkin AC, Felner EI et al (2018) Compression force sensing regulates integrin alphaIIbbeta3 adhesive function on diabetic platelets. Nat Commun 9:1087

    Article  Google Scholar 

  • Kim ST, Takeuchi K, Sun ZY, Touma M, Castro CE, Fahmy A, Lang MJ, Wagner G, Reinherz EL (2009) The alphabeta T cell receptor is an anisotropic mechanosensor. J Biol Chem 284:31028–31037

    Article  CAS  Google Scholar 

  • Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284

    Article  CAS  Google Scholar 

  • Kong, F., Li, Z., Parks, W.M., Dumbauld, D.W., García, A.J., Mould, A.P., Humphries, M.J., and Zhu, C. (2013). Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell

  • Le Trong I, Aprikian P, Kidd BA, Forero-Shelton M, Tchesnokova V, Rajagopal P, Rodriguez V, Interlandi G, Klevit R, Vogel V et al (2010) Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like β sheet twisting. Cell 141:645–655

    Article  Google Scholar 

  • Li Z, Kong F, Zhu C (2016) A model for cyclic mechanical reinforcement. Sci Rep 6:35954

    Article  CAS  Google Scholar 

  • Liu B, Chen W, Evavold BD, Zhu C (2014a) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–368

    Article  CAS  Google Scholar 

  • Liu Z, Xing D, Su QP, Zhu Y, Zhang J, Kong X, Xue B, Wang S, Sun H, Tao Y, Sun Y (2014b) Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space. Nat Commun 5:4443

  • Liu B, Chen W, Zhu C (2015a) Molecular force spectroscopy on cells. Annu Rev Phys Chem 66:427–451

    Article  CAS  Google Scholar 

  • Liu Z, Liu Y, Chang Y, Seyf HR, Henry A, Mattheyses AL, Yehl K, Zhang Y, Huang Z, Salaita K (2015b) Nanoscale optomechanical actuators for controlling mechanotransduction in living cells. Nat Meth:1–8

  • Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K, Swinburne IA, Mosaliganti KR, Collins ZM, Hiscock TW, Shea J et al (2018) Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360(6386):eaaq1392

  • Lu Y, Zhao J, Zhang R, Liu Y, Liu D, Goldys EM, Yang X, Xi P, Sunna A, Lu J et al (2013) Tunable lifetime multiplexing using luminescent nanocrystals. Nat Photonics 8:32–36

    Article  Google Scholar 

  • Luca, V.C., Kim, B.C., Ge, C., Kakuda, S., Wu, D., Roein-Peikar, M., Haltiwanger, R.S., Zhu, C., Ha, T., and Garcia, K.C. (2017). Notch-jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science

  • Luo BH, Springer TA (2006) Integrin structures and conformational signaling. Curr Opin Cell Biol 18:579–586

    Article  CAS  Google Scholar 

  • Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119:508–518

    Article  CAS  Google Scholar 

  • Miao Q, Xie C, Zhen X, Lyu Y, Duan H, Liu X, Jokerst JV, Pu K (2017) Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat Biotechnol 35:1102–1110

    CAS  PubMed  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Meth 5:491–505

    Article  CAS  Google Scholar 

  • Passam F, Chiu J, Ju L, Pijning A, Jahan Z, Mor-Cohen R, Yeheskel A, Kolsek K, Tharichen L, Aponte-Santamaria C et al (2018) Mechano-redox control of integrin de-adhesion. eLife 7:e34843

  • Pryshchep S, Zarnitsyna VI, Hong J, Evavold BD, Zhu C (2014) Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J Immunol 193:68–76

    Article  CAS  Google Scholar 

  • Reineck P, Lau DWM, Wilson ER, Nunn N, Shenderova OA, Gibson BC (2018) Visible to near-IR fluorescence from single-digit detonation nanodiamonds: excitation wavelength and pH dependence. Sci Rep 8:2478

    Article  Google Scholar 

  • Rios AC, Clevers H (2018) Imaging organoids: a bright future ahead. Nat Methods 15:24

    Article  CAS  Google Scholar 

  • Sahl SJ, Hell SW, Jakobs S (2017) Fluorescence nanoscopy in cell biology. Nat Rev Mol Cell Biol 18:685

    Article  CAS  Google Scholar 

  • Sawicka A, Babataheri A, Dogniaux S, Barakat AI, Gonzalez-Rodriguez D, Hivroz C, Husson J (2017) Micropipette force probe to quantify single-cell force generation: application to T-cell activation. Mol Biol Cell 28:3229–3239

    Article  CAS  Google Scholar 

  • Shen M, Zhang N, Zheng S, Zhang WB, Zhang HM, Lu Z, Su QP, Sun Y, Ye K, Li XD (2016) Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor. Proc Natl Acad Sci U S A 113:E5812–e5820

    Article  CAS  Google Scholar 

  • Smith ML, Gourdon D, Little WC, Kubow KE, Eguiluz RA, Luna-Morris S, Vogel V (2007) Force-induced unfolding of fibronectin in the extracellular matrix of living cells. PLoS Biol 5:e268

    Article  Google Scholar 

  • Somers WS, Tang J, Shaw GD, Camphausen RT (2000) Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 103:467–479

    Article  CAS  Google Scholar 

  • Springer TA, Dustin ML (2012) Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24:107–115

    Article  CAS  Google Scholar 

  • Stephenson NL, Avis JM (2012) Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc Natl Acad Sci U S A 109:E2757–E2765

    Article  CAS  Google Scholar 

  • Su QP, Du W, Ji Q, Xue B, Jiang D, Zhu Y, Lou J, Yu L, Sun Y (2016) Vesicle size regulates nanotube formation in the cell. Sci Rep 6:24002

    Article  CAS  Google Scholar 

  • Sun Y, Schroeder HW 3rd, Beausang JF, Homma K, Ikebe M, Goldman YE (2007) Myosin VI walks “wiggly” on actin with large and variable tilting. Mol Cell 28:954–964

    Article  CAS  Google Scholar 

  • Takebe T, Zhang B, Radisic M (2017) Synergistic engineering: organoids meet organs-on-a-Chip. Cell Stem Cell 21:297–300

    Article  CAS  Google Scholar 

  • Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E, Lippincott-Schwartz J (2017) Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature 546:162–167

    Article  CAS  Google Scholar 

  • Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernandez-Mateos J, Khan K, Lampis A, Eason K, Huntingford I, Burke R et al (2018) Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359:920–926

    Article  CAS  Google Scholar 

  • Wang C, Du W, Su QP, Zhu M, Feng P, Li Y, Zhou Y, Mi N, Zhu Y, Jiang D et al (2015) Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25:1108–1120

    Article  CAS  Google Scholar 

  • Wang Y, Botvinick E, Zhao Y, Berns M, Usami S, Tsien R, Chien S (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045

    Article  CAS  Google Scholar 

  • Wu T, Lin J, Cruz MA, Dong JF, Zhu C (2010) Force-induced cleavage of single VWFA1A2A3 tridomains by ADAMTS-13. Blood 115:370–378

    Article  CAS  Google Scholar 

  • Xu XR, Wang Y, Adili R, Ju L, Spring, CM, Jin, JW, Yang H, Neves MAD, Chen P, Yang Y, Lei X, Chen Y, Gallant RC, Xu M, Zhang H, Song J, Ke P, Zhang D, Carrim N, Yu SY, Zhu G, She YM, Cyr T, Fu W, Liu G, Connelly PW, Rand ML, Adeli K, Freedman J, Lee JE, Tso P, Marchese P, Davidson WS, Jackson SP, Zhu C, Ruggeri ZM, Ni H (2018) Apolipoprotein A-IV binds aIIbß3 integrin and inhibits thrombosis. Nat Commun. https://doi.org/10.1038/s41467-018-05806-0

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300:2061–2065

    Article  CAS  Google Scholar 

  • Zhang W, Deng W, Zhou L, Xu Y, Yang W, Liang X, Wang Y, Kulman JD, Zhang XF, Li R (2015) Identification of a juxtamembrane mechanosensitive domain in the platelet mechanosensor glycoprotein Ib-IX complex. Blood 125:562–569

    Article  CAS  Google Scholar 

  • Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324:1330–1334

    Article  CAS  Google Scholar 

  • Zhanghao K, Chen L, Yang X-S, Wang M-Y, Jing Z-L, Han H-B, Zhang MQ, Jin D, Gao J-T, Xi P (2016) Super-resolution dipole orientation mapping via polarization demodulation. Light: Sci Applications 5:e16166–e16166

    Article  CAS  Google Scholar 

  • Zhao J, Jin D, Schartner EP, Lu Y, Liu Y, Zvyagin AV, Zhang L, Dawes JM, Xi P, Piper JA et al (2013) Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat Nanotechnol 8:729–734

    Article  CAS  Google Scholar 

  • Zhong MC, Gong L, Zhou JH, Wang ZQ, Li YM (2013a) Optical trapping of red blood cells in living animals with a water immersion objective. Opt Lett 38:5134–5137

    Article  Google Scholar 

  • Zhong MC, Wei XB, Zhou JH, Wang ZQ, Li YM (2013b) Trapping red blood cells in living animals using optical tweezers. Nat Commun 4:1768

    Article  Google Scholar 

  • Zong W, Wu R, Li M, Hu Y, Li Y, Li J, Rong H, Wu H, Xu Y, Lu Y et al (2017) Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14:713–719

    Article  CAS  Google Scholar 

  • Zong W, Zhao J, Chen X, Lin Y, Ren H, Zhang Y, Fan M, Zhou Z, Cheng H, Sun Y et al (2015) Large-field high-resolution two-photon digital scanned light-sheet microscopy. Cell Res 25:254–257

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shaun P. Jackson, Dayong Jin, and their labs for helpful discussion.

Author information

Authors and Affiliations

Authors

Contributions

Q.P.S. and L.A.J. contributed equally, prepared figures, and wrote and edited the manuscript together.

Corresponding authors

Correspondence to Qian Peter Su or Lining Arnold Ju.

Ethics declarations

Funding

This work was supported by National Heart Foundation of Australia Postdoctoral Fellowship 101285 (LJ), Sydney Local Health District - Annual Health Research Infrastructure Award (LJ), The Royal College of Pathologists of Australasia Kanematsu Research Award (LJ).

Conflict of interest

Qian Peter Su declares that he has no conflict of interest. Lining Arnold Ju declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Q.P., Ju, L.A. Biophysical nanotools for single-molecule dynamics. Biophys Rev 10, 1349–1357 (2018). https://doi.org/10.1007/s12551-018-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0447-y

Keywords

Navigation