Skip to main content
Log in

Cofilin and profilin: partners in cancer aggressiveness

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

This review covers aspects of cofilin and profilin regulations and their influence on actin polymerisation responsible for cell motility and metastasis. The regulation of their activity by phosphorylation and nitration, miRs, PI(4,5)P2 binding, pH, oxidative stress and post-translational modification is described. In this review, we have highlighted selected similarities, complementarities and differences between the two proteins and how their interplay affects actin filament dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali M, Heyob K, Jacob NK, Rogers LK (2016) Alterative expression and localization of profilin 1/VASPpS157 and Cofilin 1/VASPpS239 regulates metastatic growth and is modified by DHA supplementation. Mol Cancer Ther 15(9):2220–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angelova MI, Bitbol AF, Seigneuret M, Staneva G, Kodama A, Sakuma Y, Kawakatsu T, Imai M, Puff N (2018) pH sensing by lipids in membranes: the fundamentals of pH-driven migration, polarization and deformations of lipid bilayer assemblies. Biochim Biophys Acta. https://doi.org/10.1016/j.bbamem.2018.02.026

    Article  CAS  Google Scholar 

  • Babich M, Foti LR, Sykaluk LL, Clark CR (1996) Profilin forms tetramers that bind to G-actin. Biochem Biophys Res Commun 218(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P (2010) Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci U S A 107(50):21547–21552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamburg JR, Wiggan OP (2002) ADF/cofilin and actin dynamics in disease. Trends Cell Biol 12(12):598–605

    Article  CAS  PubMed  Google Scholar 

  • Barisic S, Nagel AC, Franz-Wachtel M, Macek B, Preiss A, Link G, Maier D, Hausser A (2011) Phosphorylation of Ser 402 impedes phosphatase activity of slingshot 1. EMBO Rep 12(6):527–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard O (2007) Lim kinases, regulators of actin dynamics. Int J Biochem Cell Biol 39(6):1071–1076

    Article  CAS  PubMed  Google Scholar 

  • Bravo-Cordero JJ, Hodgson L, Condeelis JS (2014) Spatial regulation of tumor cell protrusions by RhoC. Cell Adhes Migr 8(2). https://doi.org/10.4161/cam.28405 

    Article  Google Scholar 

  • Burnett BG, Andrews J, Ranganathan S, Fischbeck KH, Di Prospero NA (2008) Expression of expanded polyglutamine targets profilin for degradation and alters actin dynamics. Neurobiol Dis 30(3):365–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai L, Marshall TW, Uetrecht AC, Schafer DA, Bear JE (2007) Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128(5):915–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cameron JM, Gabrielsen M, Chim YH, Munro J, McGhee EJ, Sumpton D, Eaton P, Anderson KI, Yin H, Olson MF (2015) Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation. Curr Biol 25(11):1520–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Biol 11(1):50–61

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Macara IG (2006) Par-3 mediates the inhibition of LIM kinase 2 to regulate cofilin phosphorylation and tight junction assembly. J Cell Biol 172(5):671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng JF, Ni GH, Chen MF, Li YJ, Wang YJ, Wang CL, Yuan Q, Shi RZ, Hu CP, Yang TL (2011) Involvement of profilin-1 in angiotensin II-induced vascular smooth muscle cell proliferation. Vasc Pharmacol 55(1–3):34–41

    Article  CAS  Google Scholar 

  • Cheng YJ, Zhu ZX, Zhou JS, Hu ZQ, Zhang JP, Cai QP, Wang LH (2015) Silencing profilin-1 inhibits gastric cancer progression via integrin beta1/focal adhesion kinase pathway modulation. World J Gastroenterol 21(8):2323–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YN, Lee SK, Seo TW, Lee JS, Yoo SJ (2014) C-terminus of Hsc70-interacting protein regulates profilin1 and breast cancer cell migration. Biochem Biophys Res Commun 446(4):1060–1066

    Article  CAS  PubMed  Google Scholar 

  • Coumans JV, Gau D, Poljak A, Wasinger V, Roy P, Moens PD (2014) Profilin-1 overexpression in MDA-MB-231 breast cancer cells is associated with alterations in proteomics biomarkers of cell proliferation, survival, and motility as revealed by global proteomics analyses. OMICS 18(12):778–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das T, Bae YH, Wells A, Roy P (2009) Profilin-1 overexpression upregulates PTEN and suppresses AKT activation in breast cancer cells. J Cell Physiol 218(2):436–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delage E, Puyaubert J, Zachowski A, Ruelland E (2013) Signal transduction pathways involving phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate: convergences and divergences among eukaryotic kingdoms. Prog Lipid Res 52(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Delorme V, Machacek M, DerMardirossian C, Anderson KL, Wittmann T, Hanein D, Waterman-Storer C, Danuser G, Bokoch GM (2007) Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks. Dev Cell 13(5):646–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diamond MI, Cai S, Boudreau A, Carey CJ Jr, Lyle N, Pappu RV, Swamidass SJ, Bissell M, Piwnica-Worms H, Shao J (2015) Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1. J Biol Chem 290(14):9075–9086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Roy P (2013) Profilin-1 versus profilin-2: two faces of the same coin? Breast Cancer Res 15(3):311. https://doi.org/10.1186/bcr3433 

  • Ding Z, Lambrechts A, Parepally M, Roy P (2006) Silencing profilin-1 inhibits endothelial cell proliferation, migration and cord morphogenesis. J Cell Sci 119(Pt 19):4127–4137

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Milosavljevic T, Alahari SK (2008) Nischarin inhibits LIM kinase to regulate cofilin phosphorylation and cell invasion. Mol Cell Biol 28(11):3742–3756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Gau D, Deasy B, Wells A, Roy P (2009) Both actin and polyproline interactions of profilin-1 are required for migration, invasion and capillary morphogenesis of vascular endothelial cells. Exp Cell Res 315(17):2963–2973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding Z, Bae YH, Roy P (2012) Molecular insights on context-specific role of profilin-1 in cell migration. Cell Adhes Migr 6(5):442–449

    Article  Google Scholar 

  • Eiseler T, Doppler H, Yan IK, Kitatani K, Mizuno K, Storz P (2009) Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 11(5):545–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Arif A, Gong Y, Jia J, Eswarappa SM, Willard B, Horowitz A, Graham LM, Penn MS, Fox PL (2012) Stimulus-dependent phosphorylation of profilin-1 in angiogenesis. Nat Cell Biol 14(10):1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Potdar AA, Gong Y, Eswarappa SM, Donnola S, Lathia JD, Hambardzumyan D, Rich JN, Fox PL (2014) Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1alpha accumulation. Nat Cell Biol 16(5):445–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedorov AA, Pollard TD, Almo SC (1994) Purification, characterization and crystallization of human platelet profilin expressed in Escherichia coli. J Mol Biol 241(3):480–482

    Article  CAS  PubMed  Google Scholar 

  • Fedorov AA, Ball T, Mahoney NM, Valenta R, Almo SC (1997) The molecular basis for allergen cross-reactivity: crystal structure and IgE-epitope mapping of birch pollen profilin. Structure 5(1):33–45

    Article  CAS  PubMed  Google Scholar 

  • Gau DM, Lesnock JL, Hood BL, Bhargava R, Sun M, Darcy K, Luthra S, Chandran U, Conrads TP, Edwards RP, Kelley JL, Krivak TC, Roy P (2015) BRCA1 deficiency in ovarian cancer is associated with alteration in expression of several key regulators of cell motility - a proteomics study. Cell Cycle 14(12):1884–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gau D, Veon W, Zeng X, Yates N, Shroff SG, Koes DR, Roy P (2016) Threonine 89 is an important residue of profilin-1 that is Phosphorylatable by protein kinase a. PLoS One 11(5):e0156313. https://doi.org/10.1371/journal.pone.0156313 

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gericke A, Leslie NR, Losche M, Ross AH (2013) PtdIns(4,5)P2-mediated cell signaling: emerging principles and PTEN as a paradigm for regulatory mechanism. Adv Exp Med Biol 991:85–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gohla A, Birkenfeld J, Bokoch GM (2005) Chronophin, a novel HAD-type serine protein phosphatase, regulates cofilin-dependent actin dynamics. Nat Cell Biol 7(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991) Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 251(4998):1231–1233

    Article  CAS  PubMed  Google Scholar 

  • Goldschmidt-Clermont PJ, Furman MI, Wachsstock D, Safer D, Nachmias VT, Pollard TD (1992) The control of actin nucleotide exchange by thymosin beta 4 and profilin. A potential regulatory mechanism for actin polymerization in cells. Mol Biol Cell 3(9):1015–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansson A, Skoglund G, Lassing I, Lindberg U, Ingelman-Sundberg M (1988) Protein kinase C-dependent phosphorylation of profilin is specifically stimulated by phosphatidylinositol bisphosphate (PIP2). Biochem Biophys Res Commun 150(2):526–531

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa K, Tatsumi H, Sokabe M (2011) Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J Cell Biol 195(5):721–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota T, Morisaki T, Nishiyama Y, Marumoto T, Tada K, Hara T, Masuko N, Inagaki M, Hatakeyama K, Saya H (2000) Zyxin, a regulator of actin filament assembly, targets the mitotic apparatus by interacting with h-warts/LATS1 tumor suppressor. J Cell Biol 149(5):1073–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma Y, Kanno S, Sasaki K, Nishita M, Yasui A, Asano T, Ohashi K, Mizuno K (2014) Insulin receptor substrate-4 binds to Slingshot-1 phosphatase and promotes cofilin dephosphorylation. J Biol Chem 289(38):26302–26313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40(Database issue):D261-270. https://doi.org/10.1093/nar/gkr1122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howe AK, Juliano RL (2000) Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2(9):593–600

    Article  CAS  PubMed  Google Scholar 

  • Huang S, McDowell JM, Weise MJ, Meagher RB (1996) The Arabidopsis profilin gene family. Evidence for an ancient split between constitutive and pollen-specific profilin genes. Plant Physiol 111(1):115–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang TY, DerMardirossian C, Bokoch GM (2006) Cofilin phosphatases and regulation of actin dynamics. Curr Opin Cell Biol 18(1):26–31

    Article  CAS  PubMed  Google Scholar 

  • Janke J, Schluter K, Jandrig B, Theile M, Kolble K, Arnold W, Grinstein E, Schwartz A, Estevez-Schwarz L, Schlag PM, Jockusch BM, Scherneck S (2000) Suppression of tumorigenicity in breast cancer cells by the microfilament protein profilin 1. J Exp Med 191(10):1675–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janmey PA, Lindberg U (2004) Cytoskeletal regulation: rich in lipids. Nat Rev Mol Cell Biol 5(8):658–666

    Article  CAS  PubMed  Google Scholar 

  • Jin HY, Song B, Oudit GY, Davidge ST, Yu HM, Jiang YY, Gao PJ, Zhu DL, Ning G, Kassiri Z, Penninger JM, Zhong JC (2012) ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production. PLoS One 7(6):e38502. https://doi.org/10.1371/journal.pone.0038502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jockusch BM, Murk K, Rothkegel M (2007) The profile of profilins. Rev Physiol Biochem Pharmacol 159:131–149

    CAS  PubMed  Google Scholar 

  • Karamchandani JR, Gabril MY, Ibrahim R, Scorilas A, Filter E, Finelli A, Lee JY, Ordon M, Pasic M, Romaschin AD, Yousef GM (2015) Profilin-1 expression is associated with high grade and stage and decreased disease-free survival in renal cell carcinoma. Hum Pathol 46(5):673–680

    Article  CAS  PubMed  Google Scholar 

  • Kasina S, Rizwani W, Radhika KV, Singh SS (2005) Nitration of profilin effects its interaction with poly (L-proline) and actin. J Biochem 138(6):687–695

    Article  CAS  PubMed  Google Scholar 

  • Kasina S, Wasia R, Fasim A, Radhika KV, Singh SS (2006) Phorbol ester mediated activation of inducible nitric oxide synthase results in platelet profilin nitration. Nitric Oxide 14(1):65–71

    Article  CAS  PubMed  Google Scholar 

  • Kligys K, Claiborne JN, DeBiase PJ, Hopkinson SB, Wu Y, Mizuno K, Jones JC (2007) The slingshot family of phosphatases mediates Rac1 regulation of cofilin phosphorylation, laminin-332 organization, and motility behavior of keratinocytes. J Biol Chem 282(44):32520–32528

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Nishita M, Mishima T, Ohashi K, Mizuno K (2006) MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration. EMBO J 25(4):713–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korupolu RV, Achary MS, Aneesa F, Sathish K, Wasia R, Sairam M, Nagarajaram HA, Singh SS (2009) Profilin oligomerization and its effect on poly (L-proline) binding and phosphorylation. Int J Biol Macromol 45(3):265–273

    Article  CAS  PubMed  Google Scholar 

  • Krauss M, Haucke V (2007) Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling. EMBO Rep 8(3):241–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan K, Moens PDJ (2009) Structure and functions of profilins. Biophys Rev 1(2):71–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kueh HY, Charras GT, Mitchison TJ, Brieher WM (2008) Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J Cell Biol 182(2):341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurita S, Gunji E, Ohashi K, Mizuno K (2007) Actin filaments-stabilizing and -bundling activities of cofilin-phosphatase Slingshot-1. Genes Cells 12(5):663–676

    Article  CAS  PubMed  Google Scholar 

  • Kurita S, Watanabe Y, Gunji E, Ohashi K, Mizuno K (2008) Molecular dissection of the mechanisms of substrate recognition and F-actin-mediated activation of cofilin-phosphatase Slingshot-1. J Biol Chem 283(47):32542–32552

    Article  CAS  PubMed  Google Scholar 

  • Kwiatkowska K (2010) One lipid, multiple functions: how various pools of PI(4,5)P(2) are created in the plasma membrane. Cell Mol Life Sci 67(23):3927–3946

    Article  CAS  PubMed  Google Scholar 

  • Lambrechts A, Verschelde JL, Jonckheere V, Goethals M, Vandekerckhove J, Ampe C (1997) The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. EMBO J 16(3):484–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C (2002) Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC Biochem 3:12. https://doi.org/10.1186/1471-2091-3-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314(6010):472–474

    Article  CAS  PubMed  Google Scholar 

  • Lassing I, Lindberg U (1988) Specificity of the interaction between phosphatidylinositol 4,5-bisphosphate and the profilin:actin complex. J Cell Biochem 37(3):255–267

    Article  CAS  PubMed  Google Scholar 

  • Lederer M, Jockusch BM, Rothkegel M (2005) Profilin regulates the activity of p42POP, a novel Myb-related transcription factor. J Cell Sci 118(Pt 2):331–341

    Article  CAS  PubMed  Google Scholar 

  • Lee-Hoeflich ST, Causing CG, Podkowa M, Zhao X, Wrana JL, Attisano L (2004) Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J 23(24):4792–4801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levental I, Christian DA, Wang YH, Madara JJ, Discher DE, Janmey PA (2009) Calcium-dependent lateral organization in phosphatidylinositol 4,5-bisphosphate (PIP2)- and cholesterol-containing monolayers. Biochemistry 48(34):8241–8248

    Article  CAS  PubMed  Google Scholar 

  • Li H, Marshall AJ (2015) Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 27(9):1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Li S, Guan JL, Chien S (2005) Biochemistry and biomechanics of cell motility. Annu Rev Biomed Eng 7:105–150

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Zhong Q, Yang T, Xie X, Chen M (2013) The role of profilin-1 in endothelial cell injury induced by advanced glycation end products (AGEs). Cardiovasc Diabetol 12(1):141. https://doi.org/10.1186/1475-2840-12-141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lorente G, Syriani E, Morales M (2014) Actin filaments at the leading edge of cancer cells are characterized by a high mobile fraction and turnover regulation by profilin I. PLoS One 9(1):e85817. https://doi.org/10.1371/journal.pone.0085817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu PJ, Shieh WR, Rhee SG, Yin HL, Chen CS (1996) Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochemistry 35(44):14027–14034

    Article  CAS  PubMed  Google Scholar 

  • Mader CC, Oser M, Magalhaes MA, Bravo-Cordero JJ, Condeelis J, Koleske AJ, Gil-Henn H (2011) An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Res 71(5):1730–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen X, Koleske AJ, Condeelis J (2011) Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J Cell Biol 195(5):903–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maimaiti Y, Liu Z, Tan J, Abudureyimu K, Huang B, Liu C, Guo Y, Wang C, Nie X, Zhou J, Huang T (2016) Dephosphorylated cofilin expression is associated with poor prognosis in cases of human breast cancer: a tissue microarray analysis. Onco Targets Ther 9:6461–6466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manetti F (2012) LIM kinases are attractive targets with many macromolecular partners and only a few small molecule regulators. Med Res Rev 32(5):968–998

    Article  CAS  PubMed  Google Scholar 

  • Marshall TW, Aloor HL, Bear JE (2009) Coronin 2A regulates a subset of focal-adhesion-turnover events through the cofilin pathway. J Cell Sci 122(Pt 17):3061–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin C, Pedersen SF, Schwab A, Stock C (2011) Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 300(3):C490–C495

    Article  CAS  PubMed  Google Scholar 

  • McLachlan GD, Cahill SM, Girvin ME, Almo SC (2007) Acid-induced equilibrium folding intermediate of human platelet profilin. Biochemistry 46(23):6931–6943

    Article  CAS  PubMed  Google Scholar 

  • Meira M, Masson R, Stagljar I, Lienhard S, Maurer F, Boulay A, Hynes NE (2009) Memo is a cofilin-interacting protein that influences PLCgamma1 and cofilin activities, and is essential for maintaining directionality during ErbB2-induced tumor-cell migration. J Cell Sci 122(Pt 6):787–797

    Article  CAS  PubMed  Google Scholar 

  • Mittermann I, Fetrow JS, Schaak DL, Almo SC, Kraft D, Herberle-Bors E, Valenta R (1998) Oligomerization of profilins from birch, man and yeast. Profilin, a ligand for itself? Sex Plant Reprod 11:183–191

    Article  CAS  Google Scholar 

  • Mizuno K (2013) Signaling mechanisms and functional roles of cofilin phosphorylation and dephosphorylation. Cell Signal 25(2):457–469

    Article  CAS  PubMed  Google Scholar 

  • Moens PD, Bagatolli LA (2007) Profilin binding to sub-micellar concentrations of phosphatidylinositol (4,5) bisphosphate and phosphatidylinositol (3,4,5) trisphosphate. Biochim Biophys Acta 1768(3):439–449

    Article  CAS  PubMed  Google Scholar 

  • Mouneimne G, DesMarais V, Sidani M, Scemes E, Wang W, Song X, Eddy R, Condeelis J (2006) Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr Biol 16(22):2193–2205

    Article  CAS  PubMed  Google Scholar 

  • Moustafa-Bayoumi M, Alhaj MA, El-Sayed O, Wisel S, Chotani MA, Abouelnaga ZA, Hassona MD, Rigatto K, Morris M, Nuovo G, Zweier JL, Goldschmidt-Clermont P, Hassanain H (2007) Vascular hypertrophy and hypertension caused by transgenic overexpression of profilin 1. J Biol Chem 282(52):37632–37639

    Article  CAS  PubMed  Google Scholar 

  • Nadella KS, Saji M, Jacob NK, Pavel E, Ringel MD, Kirschner LS (2009) Regulation of actin function by protein kinase A-mediated phosphorylation of Limk1. EMBO Rep 10(6):599–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata K, Ohashi K, Yang N, Mizuno K (1999) The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1. Biochem J 343(Pt 1):99–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson C, Johansson U, Johansson AC, Kagedal K, Ollinger K (2006) Cytosolic acidification and lysosomal alkalinization during TNF-alpha induced apoptosis in U937 cells. Apoptosis 11(7):1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Nishita M, Wang Y, Tomizawa C, Suzuki A, Niwa R, Uemura T, Mizuno K (2004) Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase slingshot and its role for insulin-induced membrane protrusion. J Biol Chem 279(8):7193–7198

    Article  CAS  PubMed  Google Scholar 

  • Nurnberg A, Kitzing T, Grosse R (2011) Nucleating actin for invasion. Nat Rev Cancer 11(3):177–187

    Article  PubMed  CAS  Google Scholar 

  • Obermann H, Raabe I, Balvers M, Brunswig B, Schulze W, Kirchhoff C (2005) Novel testis-expressed profilin IV associated with acrosome biogenesis and spermatid elongation. Mol Hum Reprod 11(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Olson MF, Sahai E (2009) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26(4):273–287

    Article  PubMed  Google Scholar 

  • Oser M, Condeelis J (2009) The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108(6):1252–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oser M, Yamaguchi H, Mader CC, Bravo-Cordero JJ, Arias M, Chen X, Desmarais V, van Rheenen J, Koleske AJ, Condeelis J (2009) Cortactin regulates cofilin and N-WASp activities to control the stages of invadopodium assembly and maturation. J Cell Biol 186(4):571–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oser M, Eddy R, Condeelis J (2010) Actin-based motile processes in tumor cell invasion. In: Carlier M-F (ed) Actin-based motility. Springer Netherlands, Dordrecht, pp 125–164

    Chapter  Google Scholar 

  • Ostrander DB, Gorman JA, Carman GM (1995) Regulation of profilin localization in Saccharomyces cerevisiae by phosphoinositide metabolism. J Biol Chem 270(45):27045–27050

    Article  CAS  PubMed  Google Scholar 

  • Paavilainen VO, Bertling E, Falck S, Lappalainen P (2004) Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. Trends Cell Biol 14(7):386–394

    Article  CAS  PubMed  Google Scholar 

  • Pae M, Romeo GR (2014) The multifaceted role of profilin-1 in adipose tissue inflammation and glucose homeostasis. Adipocyte 3(1):69–74

    Article  CAS  PubMed  Google Scholar 

  • Pandey DK, Chaudhary B (2017) Evolutionary expansion and structural functionalism of the ancient family of profilin proteins. Gene 626:70–86

    Article  CAS  PubMed  Google Scholar 

  • Pecar Fonovic U, Kos J (2015) Cathepsin X cleaves profilin 1 C-terminal Tyr139 and influences clathrin-mediated endocytosis. PLoS One 10(9):e0137217. https://doi.org/10.1371/journal.pone.0137217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pernier J, Shekhar S, Jegou A, Guichard B, Carlier MF (2016) Profilin interaction with actin filament barbed end controls dynamic instability, capping, branching, and motility. Dev Cell 36(2):201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterburs P, Heering J, Link G, Pfizenmaier K, Olayioye MA, Hausser A (2009) Protein kinase D regulates cell migration by direct phosphorylation of the cofilin phosphatase slingshot 1 like. Cancer Res 69(14):5634–5638

    Article  CAS  PubMed  Google Scholar 

  • Polet D, Lambrechts A, Vandepoele K, Vandekerckhove J, Ampe C (2007) On the origin and evolution of vertebrate and viral profilins. FEBS Lett 581(2):211–217

    Article  CAS  PubMed  Google Scholar 

  • Pollard TD, Borisy GG (2003) Cellular motility driven by assembly and disassembly of actin filaments. Cell 112(4):453–465

    Article  CAS  PubMed  Google Scholar 

  • Pope BJ, Zierler-Gould KM, Kuhne R, Weeds AG, Ball LJ (2004) Solution structure of human cofilin: actin binding, pH sensitivity, and relationship to actin-depolymerizing factor. J Biol Chem 279(6):4840–4848

    Article  CAS  PubMed  Google Scholar 

  • Rennella E, Sekhar A, Kay LE (2017) Self-assembly of human profilin-1 detected by Carr-Purcell-Meiboom-gill nuclear magnetic resonance (CPMG NMR) Spectroscopy. Biochemistry. https://doi.org/10.1021/acs.biochem.6b01263

    Article  CAS  PubMed  Google Scholar 

  • Richer SM, Stewart NK, Tomaszewski JW, Stone MJ, Oakley MG (2008) NMR investigation of the binding between human profilin I and inositol 1,4,5-triphosphate, the soluble headgroup of phosphatidylinositol 4,5-bisphosphate. Biochemistry 47(51):13455–13462

    Article  CAS  PubMed  Google Scholar 

  • Rizwani W, Fasim A, Sharma D, Reddy DJ, Bin Omar NA, Singh SS (2014) S137 phosphorylation of profilin 1 is an important signaling event in breast cancer progression. PLoS One 9(8):e103868. https://doi.org/10.1371/journal.pone.0103868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rotty JD, Wu C, Haynes EM, Suarez C, Winkelman JD, Johnson HE, Haugh JM, Kovar DR, Bear JE (2015) Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev Cell 32(1):54–67

    Article  CAS  PubMed  Google Scholar 

  • Roy P, Jacobson K (2004) Overexpression of profilin reduces the migration of invasive breast cancer cells. Cell Motil Cytoskeleton 57(2):84–95

    Article  CAS  PubMed  Google Scholar 

  • Sathish K, Padma B, Munugalavadla V, Bhargavi V, Radhika KV, Wasia R, Sairam M, Singh SS (2004) Phosphorylation of profilin regulates its interaction with actin and poly (L-proline). Cell Signal 16(5):589–596

    Article  CAS  PubMed  Google Scholar 

  • Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knorck A, Schwar G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B (2017) Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 47(9):1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Schulte B, John I, Simon B, Brockmann C, Oelmeier SA, Jahraus B, Kirchgessner H, Riplinger S, Carlomagno T, Wabnitz GH, Samstag Y (2013) A reducing milieu renders cofilin insensitive to phosphatidylinositol 4,5-bisphosphate (PIP2) inhibition. J Biol Chem 288(41):29430–29439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senju Y, Kalimeri M, Koskela EV, Somerharju P, Zhao H, Vattulainen I, Lappalainen P (2017) Mechanistic principles underlying regulation of the actin cytoskeleton by phosphoinositides. Proc Natl Acad Sci U S A 114(43):E8977–E8986. https://doi.org/10.1073/pnas.1705032114

    Article  CAS  Google Scholar 

  • Shao J, Diamond MI (2012) Protein phosphatase 1 dephosphorylates profilin-1 at Ser-137. PLoS One 7(3):e32802. https://doi.org/10.1371/journal.pone.0032802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao J, Welch WJ, Diprospero NA, Diamond MI (2008) Phosphorylation of profilin by ROCK1 regulates polyglutamine aggregation. Mol Cell Biol 28(17):5196–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shishkin, S., L. Eremina, N. Pashintseva, L. Kovalev, M. Kovaleva (2016) Cofilin-1 and other ADF/cofilin superfamily members in human malignant cells. Int J Mol Sci 18(1):10. https://doi.org/10.3390/ijms18010010

    Article  PubMed Central  CAS  Google Scholar 

  • Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM, Eddy R, Soll D, Condeelis J (2007) Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J Cell Biol 179(4):777–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SS, Chauhan A, Murakami N, Styles J, Elzinga M, Chauhan VP (1996) Phosphoinositide-dependent in vitro phosphorylation of profilin by protein kinase C. Phospholipid specificity and localization of the phosphorylation site. Recept Signal Transduct 6(2):77–86

    CAS  PubMed  Google Scholar 

  • Skare P, Karlsson R (2002) Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 522(1–3):119–124

    Article  CAS  PubMed  Google Scholar 

  • Skare P, Kreivi JP, Bergstrom A, Karlsson R (2003) Profilin I colocalizes with speckles and Cajal bodies: a possible role in pre-mRNA splicing. Exp Cell Res 286(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Song X, Chen X, Yamaguchi H, Mouneimne G, Condeelis JS, Eddy RJ (2006) Initiation of cofilin activity in response to EGF is uncoupled from cofilin phosphorylation and dephosphorylation in carcinoma cells. J Cell Sci 119(Pt 14):2871–2881

    Article  CAS  PubMed  Google Scholar 

  • Soosairajah J, Maiti S, Wiggan O, Sarmiere P, Moussi N, Sarcevic B, Sampath R, Bamburg JR, Bernard O (2005) Interplay between components of a novel LIM kinase-slingshot phosphatase complex regulates cofilin. EMBO J 24(3):473–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starr ME, Ueda J, Yamamoto S, Evers BM, Saito H (2011) The effects of aging on pulmonary oxidative damage, protein nitration, and extracellular superoxide dismutase down-regulation during systemic inflammation. Free Radic Biol Med 50(2):371–380

    Article  CAS  PubMed  Google Scholar 

  • Stuven T, Hartmann E, Gorlich D (2003) Exportin 6: a novel nuclear export receptor that is specific for profilin.actin complexes. EMBO J 22(21):5928–5940

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Thapa N, Hedman AC, Anderson RA (2013) Phosphatidylinositol 4,5-bisphosphate: targeted production and signaling. Bioessays 35(6):513–522

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Zhang Y, Xu W, Harden TK, Sondek J, Sun L, Li L, Wu D (2011) A PLCbeta/PI3Kgamma-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev Cell 21(6):1038–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P (2015) Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. Elife 4:e06126. https://doi.org/10.7554/eLife.06126

  • Tomiyoshi G, Horita Y, Nishita M, Ohashi K, Mizuno K (2004) Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing. Genes Cells 9(6):591–600

    Article  CAS  PubMed  Google Scholar 

  • Tsujita K, Itoh T (2014) Phosphoinositides in the regulation of actin cortex and cell migration. Biochim Biophys Acta 1851(6):824-831

    Article  CAS  Google Scholar 

  • van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, Yip SC, Backer JM, Eddy RJ, Condeelis JS (2007) EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol 179(6):1247–1259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vemuri B, Singh SS (2001) Protein kinase C isozyme-specific phosphorylation of profilin. Cell Signal 13(6):433–439

    Article  CAS  PubMed  Google Scholar 

  • Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb JM, Terrisse AD, Severin S, Gratacap MP, Gaits-Iacovoni F, Payrastre B (2016) Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie 125:250–258

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Richards DA (2012) Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol Open 1(9):857–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, Singer RH, Segall JE, Condeelis JS (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64(23):8585–8594

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Shibasaki F, Mizuno K (2005) Calcium signal-induced cofilin dephosphorylation is mediated by Slingshot via calcineurin. J Biol Chem 280(13):12683–12689

    Article  CAS  PubMed  Google Scholar 

  • Wentworth JK, Pula G, Poole AW (2006) Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochem J 393(Pt 2):555–564

    Article  CAS  PubMed  Google Scholar 

  • Witke W (2004) The role of profilin complexes in cell motility and other cellular processes. Trends Cell Biol 14(8):461–469

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villen J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci U S A 107(34):15299–15304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Yu K, Hao Y, Li DM, Stewart R, Insogna KL, Xu T (2004) LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nat Cell Biol 6(7):609–617

    Article  CAS  PubMed  Google Scholar 

  • Yao W, Ji S, Qin Y, Yang J, Xu J, Zhang B, Xu W, Liu J, Shi S, Liu L, Liu C, Long J, Ni Q, Li M, Yu X (2014) Profilin-1 suppresses tumorigenicity in pancreatic cancer through regulation of the SIRT3-HIF1alpha axis. Mol Cancer 13:187. https://doi.org/10.1186/1476-4598-13-187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeoh S, Pope B, Mannherz HG, Weeds A (2002) Determining the differences in actin binding by human ADF and cofilin. J Mol Biol 315(4):911–925

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33

    Article  PubMed  Google Scholar 

  • Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem 265(15):8382–8386

    Article  CAS  PubMed  Google Scholar 

  • Zaidi AH, Manna SK (2016) Profilin-PTEN interaction suppresses NF-kappaB activation via inhibition of IKK phosphorylation. Biochem J 473(7):859–872

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Ghai P, Wu H, Wang C, Field J, Zhou GL (2013) Mammalian adenylyl cyclase-associated protein 1 (CAP1) regulates cofilin function, the actin cytoskeleton, and cell adhesion. J Biol Chem 288(29):20966–20977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Hakala M, Lappalainen P (2010) ADF/cofilin binds phosphoinositides in a multivalent manner to act as a PIP(2)-density sensor. Biophys J 98(10):2327–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Wade B, Ma J, Hart CM, Sutliff RL (2017) Hypoxia alters ubiquitination of proteins associated with cellular proliferation in mouse lung. FASEB J 31(1 Supplement):1016.1018–1016.1018

    Google Scholar 

  • Zhong JC, Ye JY, Jin HY, Yu X, Yu HM, Zhu DL, Gao PJ, Huang DY, Shuster M, Loibner H, Guo JM, Yu XY, Xiao BX, Gong ZH, Penninger JM, Oudit GY (2011) Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regul Pept 166(1–3):90–97

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Jaramillo M, Whaley D, Wells A, Panchapakesa V, Das T, Roy P (2007) Profilin-1 is a negative regulator of mammary carcinoma aggressiveness. Br J Cancer 97(10):1361–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282(28):20634–20646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre D. J. Moens.

Ethics declarations

Conflict of interest

Joelle VF Coumans declares that she has no conflicts of interest. Rhonda J Davey declares that she has no conflicts of interest. Pierre DJ Moens declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Joelle V. F. Coumans and Rhonda J. Davey have participated equally in the writing of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coumans, J.V.F., Davey, R.J. & Moens, P.D.J. Cofilin and profilin: partners in cancer aggressiveness. Biophys Rev 10, 1323–1335 (2018). https://doi.org/10.1007/s12551-018-0445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0445-0

Keywords

Navigation