Skip to main content
Log in

Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The tarantula skeletal muscle X-ray diffraction pattern suggested that the myosin heads were helically arranged on the thick filaments. Electron microscopy (EM) of negatively stained relaxed tarantula thick filaments revealed four helices of heads allowing a helical 3D reconstruction. Due to its low resolution (5.0 nm), the unambiguous interpretation of densities of both heads was not possible. A resolution increase up to 2.5 nm, achieved by cryo-EM of frozen-hydrated relaxed thick filaments and an iterative helical real space reconstruction, allowed the resolving of both heads. The two heads, “free” and “blocked”, formed an asymmetric structure named the “interacting-heads motif” (IHM) which explained relaxation by self-inhibition of both heads ATPases. This finding made tarantula an exemplar system for thick filament structure and function studies. Heads were shown to be released and disordered by Ca2+-activation through myosin regulatory light chain phosphorylation, leading to EM, small angle X-ray diffraction and scattering, and spectroscopic and biochemical studies of the IHM structure and function. The results from these studies have consequent implications for understanding and explaining myosin super-relaxed state and thick filament activation and regulation. A cooperative phosphorylation mechanism for activation in tarantula skeletal muscle, involving swaying constitutively Ser35 mono-phosphorylated free heads, explains super-relaxation, force potentiation and post-tetanic potentiation through Ser45 mono-phosphorylated blocked heads. Based on this mechanism, we propose a swaying-swinging, tilting crossbridge-sliding filament for tarantula muscle contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • AL-Khayat HA (2013) Three-dimensional structure of the human myosin thick filament: clinical implications. Glob Cardiol Sci Pract 2013:280–302

    PubMed  PubMed Central  Google Scholar 

  • Alamo L, Li XE, Espinoza-Fonseca LM, Pinto A, Thomas DD, Lehman W, Padrón R (2015) Tarantula myosin free head regulatory light chain phosphorylation stiffens N-terminal extension, releasing it and blocking its docking back. Mol BioSyst 11:2180–2189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alamo, L., Pinto, A., Sulbarán, G., Mavárez, J., and Padrón, R. (2017a). Lessons from a tarantula: New insights into myosin interacting-heads motif evolution and its implications on disease. Biophys Rev. doi:10.1007/s12551-017-0292-4

  • Alamo L, Qi D, Wriggers W, Pinto A, Zhu J, Bilbao A, Gillilan RE, Hu S, Padrón R (2016) Conserved Intramolecular interactions maintain myosin interacting-heads motifs explaining tarantula muscle super-relaxed state structural basis. J Mol Biol 428:1142–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alamo L, Ware JS, Pinto A, Gillilan RE, Seidman JG, Seidman CE, Padrón R (2017b) Effects of myosin variants on interacting-heads motif explain distinct hypertrophic and dilated cardiomyopathy phenotypes. eLife 6:e24634. doi:10.7554/eLife.24634

    Article  PubMed  PubMed Central  Google Scholar 

  • Alamo L, Wriggers W, Pinto A, Bartoli F, Salazar L, Zhao FQ, Craig R, Padrón R (2008) Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. J Mol Biol 384:780–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barral JM, Epstein HF (1999) Protein machines and self assembly in muscle organization. BioEssays 21:813–823

    CAS  PubMed  Google Scholar 

  • Blankenfeldt W, Thoma NH, Wray JS, Gautel M, Schlichting I (2006) Crystal structures of human cardiac beta-myosin II S2-Delta provide insight into the functional role of the S2 subfragment. Proc Natl Acad Sci U S A 103:17713–17717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brito R, Alamo L, Lundberg U, Guerrero JR, Pinto A, Sulbarán G, Gawinowicz MA, Craig R, Padrón R (2011) A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments. J Mol Biol 414:44–61

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgess SA, Yu S, Walker ML, Hawkins RJ, Chalovich JM, Knight PJ (2007) Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state. J Mol Biol 372:1165–1178

    CAS  PubMed  Google Scholar 

  • Chew MW, Squire JM (1995) Packing of alpha-helical coiled-coil myosin rods in vertebrate muscle thick filaments. J Struct Biol 115:233–249

    CAS  PubMed  Google Scholar 

  • Clarke ML, Hofman W, Wray JS (1986) ATP binding and crossbridge structure in muscle. J Mol Biol 191:581–585

    CAS  PubMed  Google Scholar 

  • Coluccio LM (2008) Myosin: a Superfamily of molecular motors. Springer, Dordrecht

    Google Scholar 

  • Cooke R (2011) The role of the myosin ATPase activity in adaptive thermogenesis by skeletal muscle. Biophys Rev 3:33–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craig R (2012) Isolation, electron microscopy and 3D reconstruction of invertebrate muscle myofilaments. Methods 56:33–43

    CAS  PubMed  Google Scholar 

  • Craig R, Alamo L, Padrón R (1992) Structure of the myosin filaments of relaxed and rigor vertebrate striated muscle studied by rapid freezing electron microscopy. J Mol Biol 228:474–487

    CAS  PubMed  Google Scholar 

  • Craig R, Lehman W (2001) Crossbridge and tropomyosin positions observed in native, interacting thick and thin filaments. J Mol Biol 311:1027–1036

    CAS  PubMed  Google Scholar 

  • Craig R, Padrón R (1982) Structure of tarantula muscle thick filaments. J Muscle Res Cell Motil 3:487

    Google Scholar 

  • Craig R, Padrón R (1989) Disorder induced in nonoverlapping myosin cross-brdiges by loss of adenosine triphosphate. Biophys J 56:927–933

    PubMed  PubMed Central  Google Scholar 

  • Craig, R. Padrón R (2004) Molecular structure of the sarcomere. In: Engel AG, Franzini-Armstrong C (eds) Myology (3rd edn). McGraw-Hill, New York, pp 129–166

  • Craig R, Padrón R, Alamo L (1991) Direct determination of myosin filament symmetry in scallop striated adductor muscle by rapid freezing and freeze substitution. J Mol Biol 220:125–132

    CAS  PubMed  Google Scholar 

  • Craig R, Padrón R, Kendrick-Jones J (1987) Structural changes accompanying phosphorylation of tarantula muscle myosin filaments. J Cell Biol 105:1319–1327

    CAS  PubMed  Google Scholar 

  • Craig R, Woodhead JL (2006) Structure and function of myosin filaments. Curr Opin Struct Biol 16:204–212

    CAS  PubMed  Google Scholar 

  • Crowther RA, Padrón R, Craig R (1985) Arrangement of the heads of myosin in relaxed thick filaments from tarantula muscle. J Mol Biol 184:429–439

    CAS  PubMed  Google Scholar 

  • Eakins F, AL-Khayat HA, Kensler RW, Morris EP, Squire JM (2002) 3D structure of fish muscle myosin filaments. J Struct Biol 137:154–163

    CAS  PubMed  Google Scholar 

  • Egelman EH (2000) A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85:225–234

    CAS  PubMed  Google Scholar 

  • Egelman EH, Padrón R (1984) X-ray diffraction evidence that actin is a 100 a filament. Nature 307:56–58

    CAS  Google Scholar 

  • Elliott A, Offer G (1978) Shape and flexibility of the myosin molecule. J Mol Biol 123:505–519

    CAS  PubMed  Google Scholar 

  • Espinoza-Fonseca LM, Alamo L, Pinto A, Thomas DD, Padrón R (2015) Sequential myosin phosphorylation activates tarantula thick filament via a disorder-order transition. Mol BioSyst 11:2167–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza-Fonseca LM, Colson BA, Thomas DD (2014) Effects of pseudophosphorylation mutants on the structural dynamics of smooth muscle myosin regulatory light chain. Mol BioSyst 10:2693–2698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza-Fonseca LM, Kast D, Thomas DD (2007) Molecular dynamics simulations reveal a disorder-to-order transition on phosphorylation of smooth muscle myosin. Biophys J 93:2083–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza-Fonseca LM, Kast D, Thomas DD (2008) Thermodynamic and structural basis of phosphorylation-induced disorder-to-order transition in the regulatory light chain of smooth muscle myosin. J Am Chem Soc 130:12208–12209

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fee, L., Lin, W., Qiu, F., and Edwards, R. J. (2017) Myosin II sequences for Lethocerus indicus. J Musc Res Cell Motil (in press)

  • Fernández-Morán H (1960) Low-temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing with liquid helium II. Ann N Y Acad Sci 85:689–713

    PubMed  Google Scholar 

  • Fernández-Morán H (1965) Electron microscopy with high-field superconducting solenoid lenses. Proc Natl Acad Sci U S A 53:445–451

    PubMed  PubMed Central  Google Scholar 

  • Fernández-Morán H (1966) High-resolution electron microscopy with superconducting lenses at liquid helium temperatures. Proc Natl Acad Sci U S A 56:801–808

    PubMed  PubMed Central  Google Scholar 

  • Fusi L, Brunello E, Yan Z, Irving M (2016) Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle. Nat Commun 7:13281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusi L, Huang Z, Irving M (2015) The conformation of myosin heads in relaxed skeletal muscle: implications for myosin-based regulation. Biophys J 109:783–792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gillilan RE, Kumar VS, O’Neall-Hennessey E, Cohen C, Brown JH (2013) X-ray solution scattering of squid heavy Meromyosin: strengthening the evidence for an ancient compact off state. PLoS ONE 8:e81994

    PubMed  PubMed Central  Google Scholar 

  • Guerrero JR, Padrón R (1992) The substructure of the backbone of the thick filaments from tarantula muscle. Acta Microsc 1:63–83

    Google Scholar 

  • Haselgrove JC (1980) A model of myosin crossbridge structure consistent with the low-angle x-ray diffraction pattern of vertebrate muscle. J Muscle Res Cell Motil 1:177–191

    CAS  PubMed  Google Scholar 

  • Hidalgo C, Craig R, Ikebe M, Padrón R (2001a) Mechanism of phosphorylation of the regulatory light chain of myosin from tarantula striated muscle. J Muscle Res Cell Motil 22:51–59

    CAS  PubMed  Google Scholar 

  • Hidalgo, C., Medina, R., Padrón, R., Tonino, P. Horowitz R., Fa-Qing Zhao, Alamo, L., Simon, M., and Craig, R. (2001b) Mass measurement and composition of native purified myosin filaments from muscle. 55th Annual Meeting and Symposium Molecular Motors of the Society of the General Physiologists. Woodshole, MA

  • Hidalgo C, Padrón R, Horowitz R, Zhao FQ, Craig R (2001c) Purification of native myosin filaments from muscle. Biophys J 81:2817–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo C, Padrón R, Medina R, Tonino P, Alamo L, Simon M, Craig R (2001d) Mass/length measurement and composition of native purified myosin filaments from muscle. J Gen Physiol 118:10A

    Google Scholar 

  • Hitchcock-DeGregori SE, Irving TC (2014) Hugh E. Huxley: the compleat biophysicist. Biophys J 107:1493–1501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooijman P, Stewart MA, Cooke R (2011) A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys J 100:1969–1976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper SL, Hobbs KH, Thuma JB (2008) Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog Neurobiol 86:72–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hooper SL, Thuma JB (2005) Invertebrate muscles: muscle specific genes and proteins. Physiol Rev 85:1001–1060

    CAS  PubMed  Google Scholar 

  • Hu Z, Taylor DW, Reedy MK, Edwards RJ, Taylor KA (2016) Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 a resolution. Sci Adv 2:e1600058

    PubMed  PubMed Central  Google Scholar 

  • Huxley HE (1973) Structural changes in the actin- and myosin containing filaments during contraction. Cold Spring Harb Symp Quant Biol 37:361–376

    CAS  Google Scholar 

  • Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature 173:971–972

    CAS  PubMed  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    CAS  PubMed  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 164:1356–1365

    CAS  PubMed  Google Scholar 

  • Huxley HE (2004a) Fifty years of muscle and the sliding filament hypothesis. Eur J Biochem 271:1403–1415

    CAS  PubMed  Google Scholar 

  • Huxley HE (2004b) Recent X-ray diffraction studies of muscle contraction and their implications. Philos Trans R Soc Lond B 359:1879–1882

    CAS  Google Scholar 

  • Huxley HE, Brown W (1967) The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434

    CAS  PubMed  Google Scholar 

  • Huxley HE, Hanson EJ (1954) Changes in cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    CAS  PubMed  Google Scholar 

  • Huxley HE, Padrón R (1984) The effect of the ATP analogue AMPPNP on the structure of crossbridges in vertebrate skeletal muscle: X-ray diffraction and mechanical studies. J Muscle Res Cell Motil 5:613–655

    PubMed  Google Scholar 

  • Huxley HE, Zubay G (1960) Electron microscope observations on the structure of microsomal particles from Escherichia Coli. J Mol Biol 2:10–18

    Google Scholar 

  • Kast D, Espinoza-Fonseca LM, Yi C, Thomas DD (2010) Phosphorylation-induced structural changes in smooth muscle myosin regulatory light chain. Proc Natl Acad Sci U S A 107:8207–8212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kensler RW, Levine RJ, Stewart M (1985) Electron microscopic and optical diffraction analysis of the structure of scorpion muscle thick filaments. J Cell Biol 101:395–401

    CAS  PubMed  Google Scholar 

  • Kensler RW, Stewart M (1983) Frog skeletal muscle thick filaments are three-stranded. J Cell Biol 96:1797–1802

    CAS  PubMed  Google Scholar 

  • Kensler RW, Stewart M (1986) An ultrastructural study of cross-bridge arrangement in the frog thigh muscle thick filament. Biophys J 49:343–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kensler RW, Stewart M (1989) An ultrastructural study of crossbridge arrangement in the fish skeletal muscle thick filament. J Cell Sci 94(Pt 3):391–401

    PubMed  Google Scholar 

  • Kensler RW, Stewart M (1993) The relaxed crossbridge pattern in isolated rabbit psoas muscle thick filaments. J Cell Sci 105(Pt 3):841–848

    PubMed  Google Scholar 

  • Kensler RW, Woodhead JL (1995) The chicken muscle thick filament: temperature and the relaxed cross-bridge arrangement. J Muscle Res Cell Motil 16:79–90

    CAS  PubMed  Google Scholar 

  • Knight P, Trinick J (1984) Structure of the myosin projections on native thick filaments from vertebrate skeletal muscle. J Mol Biol 177:461–482

    CAS  PubMed  Google Scholar 

  • Levine RJ, Kensler RW, Reedy MC, Hofmann W, King HA (1983) Structure and paramyosin content of tarantula thick filaments. J Cell Biol 97:186–195

    CAS  PubMed  Google Scholar 

  • Levine RJC, Kensler RW, Stewart M, Haselgrove JC (1982) Molecular organization of limulus thick filaments. Soc Gen Physiol Ser 37:37–52

    CAS  PubMed  Google Scholar 

  • Linari M, Brunello E, Reconditi M, Fusi L, Caremani M, Narayanan T, Piazzesi G, Lombardi V, Irving M (2015) Force generation by skeletal muscle is controlled by mechanosensing in myosin filaments. Nature 528:276–279

  • Liu J, Wendt T, Taylor D, Taylor K (2003) Refined model of the 10S conformation of smooth muscle myosin by cryo-electron microscopy 3D image reconstruction. J Mol Biol 329:963–972

    CAS  PubMed  Google Scholar 

  • Llinas P, Isabet T, Song L, Ropars V, Zong B, Benisty H, Sirigu S, Morris C, Kikuti C, Safer D, Sweeney HL, Houdusse A (2015) How actin initiates the motor activity of myosin. Dev Cell 33:401–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luther PK, Bennett PM, Knupp C, Craig R, Padrón R, Harris SP, Patel J, Moss RL (2008) Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle. J Mol Biol 384:60–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luther PK, Winkler H, Taylor K, Zoghbi ME, Craig R, Padrón R, Squire JM, Liu J (2011) Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci U S A 108:11423–11428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez G, Pinto A, Alamo L, Baumann B, Ye F, Winkler H, Taylor K, Padrón R (2014) A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram. J Struct Biol 186:265–272

    PubMed  PubMed Central  Google Scholar 

  • Maw MC, Rowe AJ (1980) Fraying of A-filaments into three subfilaments. Nature 286:412–414

    CAS  PubMed  Google Scholar 

  • McNamara JW, Li A, dos Remedios CG, Cooke R (2015) The role of super-relaxed myosin in skeletal and cardiac muscle. Biophys Rev 7:5–14

    CAS  PubMed  Google Scholar 

  • Menetret JF, Hofmann W, Lepault J (1988) Cryo-electron microscopy of insect flight muscle thick filaments. An approach to dynamic electron microscope studies. J Mol Biol 202:175–178

    CAS  PubMed  Google Scholar 

  • Morris EP, Squire JM, Fuller GW (1991) The 4-stranded helical arrangement of myosin heads on insect (Lethocerus) flight muscle thick filaments. J Struct Biol 107:237–249

    Google Scholar 

  • Naber N, Cooke R, Pate E (2011) Slow myosin ATP turnover in the super-relaxed state in tarantula muscle. J Mol Biol 411:943–950

  • Nogara L, Naber N, Pate E, Canton M, Reggiani C, Cooke R (2016) Spectroscopic studies of the super relaxed state of skeletal muscle. PLoS ONE 11:e0160100

    PubMed  PubMed Central  Google Scholar 

  • O’Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Gyorgyi AG, Cohen C (2013) Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin. Acta Crystallogr F 69:248–252

    Google Scholar 

  • Offer G, Knight P (1996) The structure of the head-tail junction of the myosin molecule. J Mol Biol 256:407–416

    CAS  PubMed  Google Scholar 

  • Offer G, Knight PJ, Burgess SA, Alamo L, Padrón R (2000) A new model for the surface arrangement of myosin molecules in tarantula thick filaments. J Mol Biol 298:239–260

    CAS  PubMed  Google Scholar 

  • Padrón R, Alamo L (2004) The use of negative staining and cryo-electron microscopy to understand the molecular mechanism of myosin-linked regulation of striated muscle contraction. Acta Microscopica 13:14–29

    Google Scholar 

  • Padrón R (1999) Contribución de Humberto Fernández-Morán a la Microscopía Electrónica. Rev Lat Met Mat 19:5–6

    Google Scholar 

  • Padrón R (2001) The contribution of Humberto Fernández-Morán to the electron microscopy. Acta Microsc 10:54–56

    Google Scholar 

  • Padrón R (2007) Filamento de miosina: Modelo atómico. Invest Cienc 369:28–30

    Google Scholar 

  • Padrón R (2013) Two and a half years at the LMB that imprinted my scientific career (1980-1983). In: Huxley HE (ed) Memoirs and Consequences. MRC Laboratory of Molecular Biology, Cambridge, pp 315–322

    Google Scholar 

  • Padrón R, Alamo L, Craig R, Caputo C (1988) A method for quick-freezing live muscles at known instants during contraction with simultaneous recording of mechanical tension. J Microsc 151:81–102

    PubMed  Google Scholar 

  • Padrón R, Alamo L, Guerrero JR, Granados M, Uman P, Craig R (1995) Three-dimensional reconstruction of thick filaments from rapidly frozen, freeze-substituted tarantula muscle. J Struct Biol 115:250–257

    PubMed  Google Scholar 

  • Padrón R, Alamo L, Murgich J, Craig R (1998) Towards an atomic model of the thick filaments of muscle. J Mol Biol 275:35–41

    PubMed  Google Scholar 

  • Padrón R, Granados M, Alamo L, Guerrero JR, Craig R (1992) Visualization of myosin helices in sections of rapidly frozen relaxed tarantula muscle. J Struct Biol 108:269–276

    PubMed  Google Scholar 

  • Padrón R, Guerrero JR, Alamo L, Granados M, Gherbesi N, Craig R (1993a) Direct visualization of myosin filament symmetry in tarantula striated muscle by electron microscopy. J Struct Biol 111:17–21

    PubMed  Google Scholar 

  • Padrón R, Pante N, Sosa H, Kendrick-Jones J (1991) X-ray diffraction study of the structural changes accompanying phosphorylation of tarantula muscle. J Muscle Res Cell Motil 12:235–241

    PubMed  Google Scholar 

  • Padrón R, Rodríguez J, Guerrero JR, Alamo L (1993b) Fraying of thick filaments from tarantula muscle into subfilaments. Acta Microscopica 2:85–92

    Google Scholar 

  • Pante N, Sosa H, Padrón R (1986) Prediction of relative changes in the equatorial x-ray diffraction pattern of striated muscle caused by the activation of muscle contraction. Acta Cient Venez 37:223–225

    CAS  PubMed  Google Scholar 

  • Panté N, Sosa H, Padrón R (1988) X-ray diffraction study of the structural changes accompanying tarantula thick filament phosphorylation. Acta Cient Ven 39:230–236

    Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    CAS  Google Scholar 

  • Pinto A, Sanchez F, Alamo L, Padrón R (2012) The myosin interacting-heads motif is present in the relaxed thick filament of the striated muscle of scorpion. J Struct Biol 180:469–478

    CAS  PubMed  Google Scholar 

  • Poulsen FR, Lowy J (1983) Small-angle X-ray scattering from myosin heads in relaxed and rigor frog skeletal muscles. Nature 303:146–152

    CAS  PubMed  Google Scholar 

  • Ranke J (1865) Tetanus: Eine Physiologische Studie. Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelmann DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    CAS  PubMed  Google Scholar 

  • Reconditi M, Caremani M, Pinzauti F, Powers JD, Narayanan T, Stienen GJ, Linari M, Lombardi V, Piazzesi G (2017) Myosin filament activation in the heart is tuned to the mechanical task. Proc Natl Acad Sci U S A 114:3240–3245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sellers JR (1999) Myosins. Oxford University Press, Oxford

    Google Scholar 

  • Sosa H, Panté N, Padrón R (1986) Determination of the equatorial section of the X-ray diffraction pattern of live tarantula muscle. Acta Cient Ven 37:587–588

    Google Scholar 

  • Sosa H, Panté N, Padrón R (1988) Analysis of the equatorial section of the X-ray diffraction pattern of tarantula striated muscle in different experimental conditions. Acta Cient Ven 39:51–59

    CAS  Google Scholar 

  • Squire JM (1971) General model for the structure of all myosin-containing filaments. Nature 233:457–462

    CAS  PubMed  Google Scholar 

  • Squire JM (1972) General model of myosin filament structure. II. Myosin filaments and cross-bridge interactions in vertebrate striated and insect flight muscles. J Mol Biol 72:125–138

    CAS  PubMed  Google Scholar 

  • Squire JM (1973) General model of myosin filament structure. 3. Molecular packing arrangements in myosin filaments. J Mol Biol 77:291–323

    CAS  PubMed  Google Scholar 

  • Squire JM (1975) Muscle filament structure and muscle contraction. Annu Rev Biophys Bioeng 4:137–163

    CAS  PubMed  Google Scholar 

  • Squire JM (1981) The structural basis of muscular contraction. Plenum, New York

    Google Scholar 

  • Squire JM (1986) Muscle: design, diversity, and disease. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Squire JM (2009) Muscle myosin filaments: cores, crowns and couplings. Biophys Rev 1:149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Squire JM, Al-Khayat HA, Knupp C, Luther PK (2005) Molecular architecture in muscle contractile assemblies. Adv Protein Chem 71:17–87

    CAS  PubMed  Google Scholar 

  • Stewart M, Kensler RW (1986) Arrangement of myosin heads in relaxed thick filaments from frog skeletal muscle. J Mol Biol 192:831–851

    CAS  PubMed  Google Scholar 

  • Stewart M, Kensler RW, Levine RJ (1981) Structure of limulus telson muscle thick filaments. J Mol Biol 153:781–790

    CAS  PubMed  Google Scholar 

  • Stewart M, Kensler RW, Levine RJ (1985) Three-dimensional reconstruction of thick filaments from limulus and scorpion muscle. J Cell Biol 101:402–411

    CAS  PubMed  Google Scholar 

  • Stewart MA, Franks-Skiba K, Chen S, Cooke R (2010) Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc Natl Acad Sci U S A 107:430–435

    CAS  PubMed  Google Scholar 

  • Sulbarán G, Biasutto A, Alamo L, Riggs C, Pinto A, Mendéz F, Craig R, Padrón R (2013) Different head environments in tarantula thick filaments support a cooperative activation process. Biophys J 105:2114–2122

    PubMed  PubMed Central  Google Scholar 

  • Taylor KA, Glaeser RM (1974) Electron diffraction of frozen, hydrated protein crystals. Science 186:1036–1037

    CAS  PubMed  Google Scholar 

  • Taylor KA, Glaeser RM (1976) Electron microscopy of frozen hydrated biological specimens. J Ultrastruct Res 55:448–456

    CAS  PubMed  Google Scholar 

  • Vainstein V (1963) Diffraction of X-ray by chain molecules. American Elsevier Publishing Co., New York

    Google Scholar 

  • Vandenboom R (2017) Modulation of skeletal muscle contraction by myosin phosphorylation. Compr Physiol 7:171–212

    Google Scholar 

  • Vibert P (1992) Helical reconstruction of frozen-hydrated scallop myosin filaments. J Mol Biol 223:661–671

    CAS  PubMed  Google Scholar 

  • Vibert P, Craig R (1983) Electron microscopy and image analysis of myosin filaments from scallop striated muscle. J Mol Biol 165:303–320

    CAS  PubMed  Google Scholar 

  • Wendt T, Taylor D, Messier T, Trybus KM, Taylor KA (1999) Visualization of head-head interactions in the inhibited state of smooth muscle myosin. J Cell Biol 147:1385–1390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendt T, Taylor D, Trybus KM, Taylor K (2001) Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc Natl Acad Sci U S A 98:4361–4366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson C, Naber N, Pate E, Cooke R (2014) The myosin inhibitor blebbistatin stabilizes the super-relaxed state in skeletal muscle. Biophys J 107:1637–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woodhead JL, Zhao FQ, Craig R, Egelman EH, Alamo L, Padrón R (2005) Atomic model of a myosin filament in the relaxed state. Nature 436:1195–1199

    CAS  PubMed  Google Scholar 

  • Wray JS (1979) Structure of the backbone in myosin filaments of muscle. Nature 277:37–40

    CAS  PubMed  Google Scholar 

  • Wray JS (1982) Organization of myosin in invertebrate thick filaments. Soc Gen Physiol Ser 37:29–36

    CAS  PubMed  Google Scholar 

  • Wray JS, Vibert PJ, Cohen C (1975) Diversity of cross-bridge configurations in invertebrate muscles. Nature 257:561–564

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Kimura M, Li ZB, Ohno T, Takemori S, Hoh JF, Yagi N (2016) X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am J Physiol Cell Physiol 310:C692–C700

    PubMed  PubMed Central  Google Scholar 

  • Yang S, Lee K, Dato O, Ikene M, Craig R (2017) 3D Recontruction of the folded, inhibited form of vertebrate smooth muscle myosin II by single particle analysis. Biophys J 112:266a

    Google Scholar 

  • Yang S, Woodhead JL, Zhao FQ, Sulbarán G, Craig R (2015a) An approach to improve the resolution of helical filaments with a large axial rise and flexible subunits. J Struct Biol 193:45–54

  • Yang, S., Zhao, F.Q., Sulbarán, G., Woodhead, J.L., Alamo, L., Pinto, A., Padrón, R., and Craig, R. (2015b) Improved imaging, 3D reconstruction and homology modelling of tarantula thick filaments. Biophys J 589a

  • Zhao FQ, Craig R (2003a) Ca2+ causes release of myosin heads from the thick filament surface on the milliseconds time scale. J Mol Biol 327:145–158

    CAS  PubMed  Google Scholar 

  • Zhao FQ, Craig R (2003b) Capturing time-resolved changes in molecular structure by negative staining. J Struct Biol 141:43–52

    CAS  PubMed  Google Scholar 

  • Zhao FQ, Padrón R, Craig R (2008) Blebbistatin stabilizes the helical order of myosin filaments by promoting the switch 2 closed state. Biophys J 95:3322–3329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Sun Y, Zhao FQ, Yu J, Craig R, Hu S (2009) Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms. BMC Genomics 10:117

    PubMed  PubMed Central  Google Scholar 

  • Zoghbi ME, Woodhead JL, Craig R, Padrón R (2004) Helical order in tarantula thick filaments requires the "closed" conformation of the myosin head. J Mol Biol 342:1223–1236

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. John Wray for permission to reproduce unpublished tarantula diffraction patterns, and Drs. Guidenn Sulbarán, Jesús Mavárez and Gustavo Márquez for help with the manuscript. Molecular graphics images were produced using the UCSF Chimera package (Pettersen et al. 2004) from the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by the National Institutes of Health grant P41 RR-01081). This work was supported in part by Centro de Biología Estructural del Mercosur (www.cebem-lat.org) (to R.P.), Russian Foundation for Basic Research (15-04-02174 to N.K., 16-04-00693 to A.T.), Cornell High Energy Synchrotron Source (CHESS) is supported by the NSF & NIH/NIGMS via NSF award DMR-1332208, and the MacCHESS resources are supported by NIGMS award GM-103485 (to R.E.G.) and the Howard Hughes Medical Institute (to R.P.).

We dedicate this paper to the memory of Dr. Hugh E. Huxley.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Padrón.

Ethics declarations

Conflicts of interest

Lorenzo Alamo declares that he has no conflicts of interest. Natalia Koubassova declares that she has no conflicts of interest. Antonio Pinto declares that he has no conflicts of interest. Richard Gillilan declares that he has no conflicts of interest. Andrey Tsaturyan declares that he has no conflicts of interest. Raúl Padrón declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alamo, L., Koubassova, N., Pinto, A. et al. Lessons from a tarantula: new insights into muscle thick filament and myosin interacting-heads motif structure and function. Biophys Rev 9, 461–480 (2017). https://doi.org/10.1007/s12551-017-0295-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0295-1

Keywords

Navigation