Skip to main content
Log in

Relation between biophysical properties of nanostructures and their toxicity on zebrafish

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

In recent years, the use of commercial nanoparticles in different industry and health fields has increased exponentially. However, the uncontrolled application of nanoparticles might present a potential risk to the environment and health. Toxicity of these nanoparticles is usually evaluated by a fast screening assay in zebrafish (Danio rerio). The use of this vertebrate animal model has grown due to its small size, great adaptability, high fertilization rate and fast external development of transparent embryos. In this review, we describe the toxicity of different micro- and nanoparticles (carbon nanotubes, dendrimers, emulsions, liposomes, metal nanoparticles, and solid lipid nanoparticles) associated to their biophysical properties using this model. The main biophysical properties studied are size, charge and surface potential due to their impact on the environment and health effects. The review also discusses the correlation of the effects of the different nanoparticles on zebrafish. Special focus is made on morphological abnormalities, altered development and abnormal behavior. The last part of the review debates changes that should be made in future directions in order to improve the use of the zebrafish model to assess nanotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

dpf:

Days post-fecundation

hpf:

Hours post-fecundation

NPs:

Nanoparticles

References

  • Ahmad F, Liu X, Zhou Y, Yao H (2015) An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe 2 O 4) nanoparticles in larval-embryo zebrafish (Danio Rerio). Aquat Toxicol 166:21–28

    CAS  PubMed  Google Scholar 

  • Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 61:457–466. https://doi.org/10.1016/j.addr.2009.03.010

  • Alonso-Romanowski S, Chiaramoni NS, Lioy VS, Gargini RA, Viera LI, Taira MC (2003) Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem Phys Lipids 122:191–203

    CAS  PubMed  Google Scholar 

  • Ammala A (2013) Biodegradable polymers as encapsulation materials for cosmetics and personal care markets. Int J Cosmet Sci 35(2):113–124

  • Araya H, Tomita M, Hayashi M (2005) The novel formulation design of O/W microemulsion for improving the gastrointestinal absorption of poorly water soluble compounds. Int J Pharm 305:61–74

    CAS  PubMed  Google Scholar 

  • Asharani PV, Serina NG, Nurmawati MH, Wu YL, Gong Z, Valiyaveettil S (2008) Impact of multi-walled carbon nanotubes on aquatic species. J Nanosci Nanotechnol 8:3603–3609

    CAS  PubMed  Google Scholar 

  • Ašmonaitė G, Boyer S, de Souza KB, Wassmur B, Sturve J (2016) Behavioural toxicity assessment of silver ions and nanoparticles on zebrafish using a locomotion profiling approach. Aquatic Toxicol 173:143–153

    Google Scholar 

  • Bayat N, Lopes VR, Scholermann J, Jensen LD, Cristobal S (2015) Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials 63:1–13. https://doi.org/10.1016/j.biomaterials.2015.05.044

  • Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2011) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio Rerio). J Toxicol 2012:15–24

  • Boas U, Heegaard PM (2004) Dendrimers in drug research. Chem Soc Rev 33:43–63

    CAS  PubMed  Google Scholar 

  • Bodewein L, Schmelter F, Di Fiore S, Hollert H, Fischer R, Fenske M (2016) Differences in toxicity of anionic and cationic PAMAM and PPI dendrimers in zebrafish embryos and cancer cell lines. Toxicol Appl Pharmacol 305:83–92

    CAS  PubMed  Google Scholar 

  • Bouyer E, Mekhloufi G, Rosilio V, Grossiord J-L, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharm 436:359–378

    CAS  PubMed  Google Scholar 

  • Caminati G, Turro NJ, Tomalia DA (1990) Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants. J Am Chem Soc 112:8515–8522

    CAS  Google Scholar 

  • Chen TH, Lin CY, Tseng MC (2011) Behavioral effects of titanium dioxide nanoparticles on larval zebrafish (Danio Rerio). Mar Pollut Bull 63(5):303–308

  • Cheng J, Cheng SH (2012) Influence of carbon nanotube length on toxicity to zebrafish embryos. Int J Nanomed 7:3731–3739. https://doi.org/10.2147/IJN.S30459

  • Cheng J, Flahaut E, Cheng SH (2007) Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environ Toxicol Chem 26:708–716

    CAS  PubMed  Google Scholar 

  • Cheng J et al (2009) Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio Rerio). Toxicol Appl Pharmacol 235:216–225. https://doi.org/10.1016/j.taap.2008.12.006

  • Chiaramoni NS, Speroni L, Taira MC, Alonso Sdel V (2007) Liposome/DNA systems: correlation between association, hydrophobicity and cell viability. Biotechnol Lett 29:1637–1644

    CAS  PubMed  Google Scholar 

  • Chiaramoni NS, Baccarini LC, Taira MC, Alonso Sdel V (2008) Liposome/DNA systems: correlation between hydrophobicity and DNA conformational changes. J Biol Phys 34:179–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiaramoni NS, Gasparri J, Speroni L, Taira MC, Alonso Sdel V (2010) Biodistribution of liposome/DNA systems after subcutaneous and intraperitoneal inoculation. J Liposome Res 20:191–201

    CAS  PubMed  Google Scholar 

  • da Rocha AM, Ferreira JR, Barros DM, Pereira TCB, Bogo MR, Oliveira S et al (2013) Gene expression and biochemical responses in brain of zebrafish Danio Rerio exposed to organic nanomaterials: carbon nanotubes (SWCNT) and fullerenol (C 60 (OH) 18–22 (OK 4)). Comp Biochem Physiol A Mol Integr Physiol 165(4):460–467

  • de Paula JN, Calixto JM, Ladeira LO, Ludvig P, Souza TCC, Rocha JM, de Melo AAV (2014) Mechanical and rheological behavior of oil-well cement slurries produced with clinker containing carbon nanotubes. J Petroleum Sci Eng 122:274–279

    Google Scholar 

  • Deng X, Jia G, Wang HF, Sun H, Wang X, Yang S, Wang TC, Liu Y (2007). Translocation and fate ofmulti-walled carbon nanotubes in vivo. Carbon, 45(7), 1419-1424.

  • Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B (2015) Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater 283:897–904

    CAS  PubMed  Google Scholar 

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962. https://doi.org/10.1016/j.bmc.2009.02.043

  • Farre M, Gajda-Schrantz K, Kantiani L, Barcelo D (2009) Ecotoxicity and analysis of nanomaterials in the aquatic environment. Anal Bioanal Chem 393:81–95. https://doi.org/10.1007/s00216-008-2458-1

  • Feas DA et al (2017) Nutraceutical emulsion containing valproic acid (NE-VPA): a drug delivery system for reversion of seizures in zebrafish larvae epilepsy model. J Pharm Investig:1–9

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio Rerio) early life stages. Aquat Toxicol 100:218–228. https://doi.org/10.1016/j.aquatox.2010.02.019

  • Fernandez Ruocco MJ (2011) Estudio de liposomas polimerizables como vectores de principios activos anti-obesidad. Universidad Nacional de Quilmes, Buenos Aires

    Google Scholar 

  • Fernandez Ruocco MJS, Igartua M, Prieto D, Jimena M, del Valle AS, Chiaramoni NS (2013) Lipid-polymer membranes as carriers for L-tryptophan: molecular and metabolic properties open. J Med Chem 3:9. https://doi.org/10.4236/ojmc.2013.31005

  • Filho Jde S, Matsubara EY, Franchi LP, Martins IP, Rivera LM, Rosolen JM, Grisolia CK (2014) Evaluation of carbon nanotubes network toxicity in zebrafish (Danio Rerio) model. Environ Res 134:9–16. https://doi.org/10.1016/j.envres.2014.06.017

  • Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571. https://doi.org/10.1016/j.copbio.2007.11.008

  • Frechet JM (1994) Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science-AAAS 263:1710–1714

    CAS  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin—incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86:243–252

    CAS  PubMed  Google Scholar 

  • Frohlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591. https://doi.org/10.2147/IJN.S36111

  • Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 7:5577–5591

    Google Scholar 

  • Fu K, Sun YP (2003) Dispersion and solubilization of carbon nanotubes. J Nanosci Nanotechnol 3:351–364

    CAS  PubMed  Google Scholar 

  • Ganta S, Deshpande D, Korde A, Amiji M (2010) A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 27:260–273

    CAS  PubMed  Google Scholar 

  • Gasparri J, Speroni L, Chiaramoni NS, del Valle AS (2011) Relationship between the adjuvant and cytotoxic effects of the positive charges and polymerization in liposomes. J Liposome Res 21:124–133

    CAS  PubMed  Google Scholar 

  • Ghobadian M, Nabiuni M, Parivar K, Fathi M, Pazooki J (2015) Toxic effects of magnesium oxide nanoparticles on early developmental and larval stages of zebrafish (Danio Rerio). Ecotoxicol Environ Saf 122:260–267

    CAS  PubMed  Google Scholar 

  • Gilbertson LM, Melnikov F, Wehmas LC, Anastas PT, Tanguay RL, Zimmerman JB (2016) Toward safer multi-walled carbon nanotube design: establishing a statistical model that relates surface charge and embryonic zebrafish mortality. Nanotoxicology 10(1):10–19

  • Girardi FA et al (2017) Toxicity of single-wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (Danio Rerio) embryos. J Appl Toxicol 37:214–221. https://doi.org/10.1002/jat.3346

  • Gou M et al (2008) A novel injectable local hydrophobic drug delivery system: biodegradable nanoparticles in thermo-sensitive hydrogel. Int J Pharm 359:228–233

    CAS  PubMed  Google Scholar 

  • Gupta U, Perumal O (2014) Chapter 15- dendrimers and its biomedical applications A2- Kumbar, Sangamesh G. In: Laurencin CT, Deng M (eds) Natural and synthetic biomedical polymers. Elsevier, Oxford, pp 243–257. https://doi.org/10.1016/B978-0-12-396983-5.00016-8

  • Hasanzadeh M, Shadjou N, Eskandani M, Soleymani J, Jafari F, de la Guardia M (2014) Dendrimer-encapsulated and cored metal nanoparticles for electrochemical nanobiosensing. TrAC Trends Anal Chem 53:137–149

  • He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013:578290. https://doi.org/10.1155/2013/578290

  • Heiden TCK, Dengler E, Kao WJ, Heideman W, Peterson RE (2007) Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol Appl Pharmacol 225:70–79

    PubMed  Google Scholar 

  • Hirota S, Duzgunes N (2011) Physico-chemical approach to targeting phenomena. Curr Drug Discov Technol 8:286

    CAS  PubMed  Google Scholar 

  • Hu Y-L, Qi W, Han F, Shao J-Z, Gao J-Q (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomed 6:3351–3359

    CAS  Google Scholar 

  • Hu Q, Guo F, Zhao F, Fu Z (2017) Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. Chemosphere 173:373–379

    CAS  PubMed  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: Let’s meet the challenge. Int J Pharm 394:122–142. https://doi.org/10.1016/j.ijpharm.2010.04.027

  • Jones CF et al (2012) Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano 6:9900–9910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK (2016) A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res 18:1–14

    CAS  Google Scholar 

  • Keller BC (2001) Liposomes in nutrition. Trends Food Sci Technol 12:25–31. https://doi.org/10.1016/s0924-2244(01)00044-9

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39(2):268–307

  • Kilin VN et al (2014) Counterion-enhanced cyanine dye loading into lipid nano-droplets for single-particle tracking in zebrafish. Biomaterials 35:4950–4957. https://doi.org/10.1016/j.biomaterials.2014.02.053

  • Klymchenko AS et al (2012) Highly lipophilic fluorescent dyes in nano-emulsions: towards bright non-leaking nano-droplets. RSC Adv 2:11876–11886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam S, Chua H, Gong Z, Lam T, Sin Y (2004) Development and maturation of the immune system in zebrafish, Danio Rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28:9–28

    CAS  PubMed  Google Scholar 

  • Lanone S, Boczkowski J (2006) Biomedical applications and potential health risks of nanomaterials: molecular mechanisms. Curr Mol Med 6:651–663

    CAS  PubMed  Google Scholar 

  • Lee H, Larson RG (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B 112:12279–12285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XT et al (2014) Toxicity of multi-walled carbon nanotubes, graphene oxide, and reduced graphene oxide to zebrafish embryos. Biomed Environ Sci 27:676–683. https://doi.org/10.3967/bes2014.103

  • Madaan K, Kumar S, Poonia N, Lather V, Pandita D (2014) Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J Pharm Bioallied Sci 6(3):139

  • Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432. https://doi.org/10.1021/cr1003166

  • McClements DJ (2012) Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv Colloid Interf Sci 174:1–30

    CAS  Google Scholar 

  • McClements DJ (2015) Food emulsions: principles, practices, and techniques. CRC, Boca Raton

    Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    PubMed  Google Scholar 

  • Nagel R (2001) DarT: the embryo test with the zebrafish Danio Rerio--a general model in ecotoxicology and toxicology. ALTEX 19:38–48

    Google Scholar 

  • Nayak TR, Leow PC, Ee P-LR, Arockiadoss T, Ramaprabhu S, Pastorin G (2010) Crucial parameters responsible for carbon nanotubes toxicity. Curr Nanosci 6:141–154

    CAS  Google Scholar 

  • Neibert K, Gosein V, Sharma A, Khan M, Whitehead MA, Maysinger D, Kakkar A (2013) “Click” dendrimers as anti-inflammatory agents: with insights into their binding from molecular modeling studies. Mol Pharm 10(6):2502–2508

  • Niyaghi F, Haapala KR, Harper SL, Weismiller MC (2014) Stability and biological responses of zinc oxide metalworking Nanofluids (ZnO MWnF™) using dynamic light scattering and zebrafish assays. Tribol Trans 57:730–739

    CAS  Google Scholar 

  • Nyilasi I, Papp T, Csernetics A, Krizsan K, Nagy E, Vagvolgyi C (2008) High-affinity iron permease (FTR1) gene sequence-based molecular identification of clinically important Zygomycetes. Clin Microbiol Infect 14:393–397. https://doi.org/10.1111/j.1469-0691.2007.01932.x

  • Oliveira E, Casado M, Faria M, Soares AM, Navas JM, Barata C, Piña B (2014) Transcriptomic response of zebrafish embryos to polyaminoamine (PAMAM) dendrimers. Nanotoxicology 8:92–99

    CAS  PubMed  Google Scholar 

  • Ong WJ, Gui MM, Chai SP, Mohamed AR (2013) Direct growth of carbon nanotubes on Ni/TiO 2 as next generation catalysts for photoreduction of CO 2 to methane by water under visible light irradiation. RSC Adv 3(14):4505–4509

  • Papp T, Schiffmann D, Weiss D, Castranova V, Vallyathan V, Rahman Q (2008) Human health implications of nanomaterial exposure. Nanotoxicology 2:9–27

    CAS  Google Scholar 

  • Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, Bianco A (2006) Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun (Camb):1182–1184. https://doi.org/10.1039/b516309a

  • Patil MP, Kim GD (2017) Eco-friendly approach for nanoparticles synthesis and mechanism behind antibacterial activity of silver and anticancer activity of gold nanoparticles. Appl Microbiol Biotechnol 101:79–92. https://doi.org/10.1007/s00253-016-8012-8

  • Piorkowski DT, McClements DJ (2014) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll 42:5–41

    CAS  Google Scholar 

  • Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60–68. https://doi.org/10.1021/ar700089b

  • Prieto MJ, del Rio Zabala NE, Marotta CH, Bichara D, Simonetta S, Chiaramoni NS, Alonso SV (2013) G4.5 Pamam dendrimer-rispericarried out: biodistribution and behavioral changes in in vivo model. Nanomed Biother Discov 4:121. https://doi.org/10.4172/2155-983X.1000121

  • Prieto MJ, del Rio Zabala NE, Marotta CH, Gutierrez HC, Arevalo RA, Chiaramoni NS, del Valle AS (2014) Optimization and in vivo toxicity evaluation of G4. 5 PAMAM dendrimer-rispericarried out complexes. PLoS ONE 9:e90393

    PubMed  PubMed Central  Google Scholar 

  • Pryor JB, Harper BJ, Harper SL (2014) Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish

  • Qin G et al (2011) Partially polymerized liposomes: stable against leakage yet capable of instantaneous release for remote controlled drug delivery. Nanotechnology 22:155605. https://doi.org/10.1088/0957-4484/22/15/155605

  • Qiao Z, Shi X (2015) Dendrimer-based molecular imaging contrast agents. Prog Polym Sci 44:1–27

  • Reddy AM, Babu PS (2016) Dendrimers in antimicrobial therapy-an overview. Res J Pharm Technol 9(3):322–332

  • Ruyra A, Cano-Sarabia M, Mackenzie SA, Maspoch D, Roher N (2013) A novel liposome-based nanocarrier loaded with an LPS-dsRNA cocktail for fish innate immune system stimulation. PLoS ONE 8:e76338. https://doi.org/10.1371/journal.pone.0076338

  • Sharma S, Mehra NK, Jain K, Jain NK (2016) Effect of functionalization on drug delivery potential of carbon nanotubes. Artif Cells, Nanomed, Biotechnol 44:1851–1860. https://doi.org/10.3109/21691401.2015.1111227

  • Siekmann B, Westesen K (1992) Submicron-sized parenteral carrier systems based on solid lipids. Pharm Pharmacol Lett:123–126

  • Sloman KA, Scott GR, Diao Z, Rouleau C, Wood CM, McDonald DG (2003) Cadmium affects the social behaviour of rainbow trout, Oncorhynchus Mykiss. Aquat Toxicol 65:171–185

    CAS  PubMed  Google Scholar 

  • Souza G, Duarte J, Fernandes C, Moyado J, Navarrete A (2016) Obtainment and study of the toxicity of Perillyl alcohol Nanoemulsion on zebrafish (Danio Rerio). J Nanomed Res 4:00093

    Google Scholar 

  • Suarez I, Rosal R, Rodriguez A, Ucles A, Fernandez-Alba A, Hernando M, García-Calvo E (2011) Chemical and ecotoxicological assessment of poly (amidoamine) dendrimers in the aquatic environment. Trends Anal Chem 30:492–506

    CAS  Google Scholar 

  • Svenson S, Tomalia DA (2012) Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 64:102–115

    Google Scholar 

  • Tajarobi F, El-Sayed M, Rege B, Polli J, Ghandehari H (2001) Transport of poly amidoamine dendrimers across Madin–Darby canine kidney cells. Int J Pharm 215:263–267

    CAS  PubMed  Google Scholar 

  • Temprana CF, Duarte EL, Taira MC, Lamy MT, del Valle AS (2010) Structural characterization of photopolymerizable binary liposomes containing diacetylenic and saturated phospholipids. Langmuir: ACS J Surf Colloids 26:10084–10092. https://doi.org/10.1021/la100214v

  • Tomalia D et al (1985) A new class of polymers: starburst-dendritic. Polym J 17:117–132

    CAS  Google Scholar 

  • Tomalia DA, Naylor AM, Goddard WA (1990) Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew Chem Int Ed Engl 29:138–175

    Google Scholar 

  • Usenko CY, Harper SL, Tanguay RL (2007) In vivo evaluation of carbon fullerene toxicity using embryonic zebrafish. Carbon 45:1891–1898. https://doi.org/10.1016/j.carbon.2007.04.021

  • Wang H et al (2004) Biodistribution of carbon single-wall carbon nanotubes in mice. J Nanosci Nanotechnol 4:1019–1024

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhou J, Liu L, Huang C, Zhou D, Fu L (2016) Characterization and toxicology evaluation of chitosan nanoparticles on the embryonic development of zebrafish, Danio rerio. Carbohydr Polym 141:204–210

    CAS  PubMed  Google Scholar 

  • Weber GE, Dal Bosco L, Gonçalves CO, Santos AP, Fantini C, Furtado CA et al (2014) Biodistribution and toxicological study of PEGylated single-wall carbon nanotubes in the zebrafish (Danio Rerio) nervous system. Toxicol Appl Pharmacol 280(3):484–492

  • Wehmas LC, Anders C, Chess J, Punnoose A, Pereira CB, Greenwood JA, Tanguay RL (2015) Comparative metal oxide nanoparticle toxicity using embryonic zebrafish. Toxicol Rep 2:702–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan D, Ni LK, Chen HL, Chen LC, Chen YH, Cheng CC (2016) Amphiphilic nanoparticles of resveratrol-norcantharidin to enhance the toxicity in zebrafish embryo. Bioorg Med Chem Lett 26:774–777. https://doi.org/10.1016/j.bmcl.2015.12.099

  • Yang Y, Bugno J, Hong S (2013) Nanoscale polymeric penetration enhancers in topical drug delivery. Polym Chem 4(9):2651–2657

  • Yang J, Zhang Q, Chang H, Cheng Y (2015) Surface-engineered dendrimers in gene delivery. Chem Rev 115(11):5274–5300

  • Yavlovich A, Singh A, Jang H, Nussinov R, Puri A, Blumenthal R (2010) Light-induced permeability changes in liposomes containing photo-Polymerizable phospholipids. Biophys J 98:602a. https://doi.org/10.1016/j.bpj.2009.12.3279

  • Yostawonkul J et al (2017) Surface modification of nanostructure lipid carrier (NLC) by oleoyl-quaternized-chitosan as a mucoadhesive nanocarrier. Colloids Surf B 149:301–311

    CAS  Google Scholar 

  • Yuan Y et al (2013) A novel PEGylated liposome-encapsulated SANT75 suppresses tumor growth through inhibiting hedgehog signaling pathway. PLoS ONE 8:e60266. https://doi.org/10.1371/journal.pone.0060266

  • Yuan Z et al (2016) Chitosan nanoparticles and their tween 80 modified counterparts disrupt the developmental profile of zebrafish embryos. Int J Pharm 515:644–656

    CAS  PubMed  Google Scholar 

  • Zhao D, Gong T, Fu Y, Nie Y, He L-L, Liu J, Zhang Z-R (2008) Lyophilized Cheliensisin a submicron emulsion for intravenous injection: characterization, in vitro and in vivo antitumor effect. Int J Pharm 357:139–147

    CAS  PubMed  Google Scholar 

  • Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136:49–59

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) for financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. del V. Alonso or M. J. Prieto.

Ethics declarations

Conflicts of interest

C.S. Martinez declares that she has no conflicts of interest. D.E. Igartúa declares that he has no conflicts of interest. M.N. Calienni declares that she has no conflicts of interest. D.A. Feas declares that she has no conflicts of interest. M. Siri declares that she has no conflicts of interest. J. Montanari declares that he has no conflicts of interest. N.S. Chiaramoni declares that she has no conflicts of interest. S.delV. Alonso declares that she has no conflicts of interest. M.J. Prieto declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, C.S., Igartúa, D.E., Calienni, M.N. et al. Relation between biophysical properties of nanostructures and their toxicity on zebrafish. Biophys Rev 9, 775–791 (2017). https://doi.org/10.1007/s12551-017-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0294-2

Keywords

Navigation