Skip to main content
Log in

Directly watching biomolecules in action by high-speed atomic force microscopy

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Proteins are dynamic in nature and work at the single molecule level. Therefore, directly watching protein molecules in dynamic action at high spatiotemporal resolution must be the most straightforward approach to understanding how they function. To make this observation possible, high-speed atomic force microscopy (HS-AFM) has been developed. Its current performance allows us to film biological molecules at 10–16 frames/s, without disturbing their function. In fact, dynamic structures and processes of various proteins have been successfully visualized, including bacteriorhodopsin responding to light, myosin V walking on actin filaments, and even intrinsically disordered proteins undergoing order/disorder transitions. The molecular movies have provided insights that could not have been reached in other ways. Moreover, the cantilever tip can be used to manipulate molecules during successive imaging. This capability allows us to observe changes in molecules resulting from dissection or perturbation. This mode of imaging has been successfully applied to myosin V, peroxiredoxin and doublet microtubules, leading to new discoveries. Since HS-AFM can be combined with other techniques, such as super-resolution optical microscopy and optical tweezers, the usefulness of HS-AFM will be further expanded in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437

    Article  CAS  Google Scholar 

  • Ando T, Uchihashi T, Kodera N (2013) High-speed AFM and applications to biomolecular systems. Annu Rev Biophys 42:393–414

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer PD (1997) The ATP synthase--a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  • Capitanio M, Pavone FS (2013) Interrogating biology with force: Single molecule high-resolution measurements with optical tweezers. Biophys J 105:1293–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J-P, Stahlberg H, Sturgis JN, Scheuring S (2012) Characterization of the motion of membrane proteins using high speed atomic force microscopy. Nat Nanotechnol 7:525–529

    Article  CAS  PubMed  Google Scholar 

  • Chiaruttini N, Redondo-Morata L, Colom A, Humbert F, Lenz M, Scheuring S, Roux A (2015) Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163:1–14

    Article  Google Scholar 

  • Deniz AA, Mukhopadhyay S, Lemke EA (2008) Single-molecule biophysics: At the interface of biology, physics and chemistry. J R Soc Interface 5:15–45

    Article  CAS  PubMed  Google Scholar 

  • Eeftens JM, Katan AJ, Kschonsak M, Hassler M, de Wilde L, Dief EM, Haering CH, Dekker C (2016) Condensin Smc2-Smc4 Dimers are flexible and dynamic. Cell Rep 14:1813–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fantner GE, Barbero RJ, Gray DS, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 5:280–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T (2013) High-speed atomic force microscope combined with single-molecule fluorescence microscope. Rev Sci Instrum 84:073706 (8 pp)

    Article  PubMed  Google Scholar 

  • Hashimoto M, Kodera N, Tsunaka Y, Oda M, Tanimoto M, Ando T, Morikawa K, Tate S (2013) Phosphorylation-coupled intramolecular dynamics of unstructured regions in chromatin remodeler FACT. Biophys J 104:2222–2234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwich AL, Fenton WA (2009) Chaperonin-mediated protein folding: Using a central cavity to kinetically assist polypeptide chain folding. Q Rev Biophys 42:83–116

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Uchihashi T, Koivula A, Wada M, Kimura S, Okamoto T, Penttilä M, Ando T, Samejima M (2011) Traffic jams reduce hydrolytic efficiency of cellulase on cellulose surface. Science 333:1279–1282

    Article  CAS  PubMed  Google Scholar 

  • Igarashi K, Uchihashi T, Uchiyama T, Sugimoto H, Wada M, Suzuki K, Sakuda S, Ando T, Watanabe T, Samejima M (2014) Two-way traffic of glycoside hydrolase family 18 processive chitinases on crystalline chitin. Nat Commun 5:3975 (7 pp)

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Ando T (2014) The path to visualization of walking myosin V by high-speed atomic force microscopy. Biophys Rev 6:237–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:083704 (7 pp)

    Article  Google Scholar 

  • Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76

    Article  CAS  PubMed  Google Scholar 

  • Kodera N, Uchida K, Ando T, Aizawa S (2015) Two-ball structure of the flagellar hook-length control protein FliK as revealed by high-speed atomic force microscopy. J Mol Biol 427:406–414

    Article  CAS  PubMed  Google Scholar 

  • Kowal J, Chami M, Baumgartner P, Arheit M, Chiu P-L, Rangl M, Scheuring S, Schröder GF, Nimigean CM, Stahlberg H (2014) Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1. Nat Commun 5:3106 (10 pp)

    Article  PubMed  PubMed Central  Google Scholar 

  • Milhiet P-E, Yamamoto D, Berthoumieu O, Dosset P, Le Grimellec C, Verdier J-M, Marchal S, Ando T (2010) Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLoS ONE 5:e13240 (8 pp)

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K, Hirose S, Morikawa K, Ando T (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem Phys Chem 9:1859–1866

    Article  CAS  PubMed  Google Scholar 

  • Nango E et al (2016) A three-dimensionalmovie of structural changes in bacteriorhodopsin. Science 354:1552–1557

    Article  CAS  PubMed  Google Scholar 

  • Ngo KX, Kodera N, Katayama E, Ando T, Uyeda TQP (2015) Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed AFM. elife 4:e04806 (22 pp)

    Article  PubMed Central  Google Scholar 

  • Noi K, Yamamoto D, Nishikori S, Arita-Morioka K, Ando T, Ogura T (2013) High-speed atomic force microscopic observation of ATP-dependent rotation of the AAA+ chaperone p97. Structure 21:1992–2002

    Article  CAS  PubMed  Google Scholar 

  • Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  CAS  PubMed  Google Scholar 

  • Oestreicher Z, Taoka A, Fukumori Y (2015) A comparison of the surface nanostructure from two different types of gram-negative cells: Escherichia Coli and Rhodobacter sphaeroides. Micron 72:8–14

    Article  PubMed  Google Scholar 

  • Preiner J, Kodera N, Tang J, Ebner A, Brameshuber M, Blaas D, Gelbmann N, Gruber HJ, Ando T, Hinterdorfer P (2014) IgGs are made for walking on bacterial and viral surfaces. Nat Commun 5:4394 (8 pp)

    Article  CAS  PubMed  Google Scholar 

  • Preiner J, Horner A, Karner A, Ollinger N, Siligan C, Pohl P, Hinterdorfer P (2015) High-speed AFM images of thermal motion provide stiffness map of interfacial membrane protein moieties. Nano Lett 15:759–763

    Article  CAS  PubMed  Google Scholar 

  • Rajendran A, Endo M, Sugiyama H (2015) Direct visualization of walking motions of photocontrolled nanomachine on the DNA nanostructure. Nano Lett 15:6672–6676

    Article  Google Scholar 

  • Rangl M, Miyagi A, Kowal J, Stahlberg H, Nimigean CM, Scheuring S (2016) Real-time visualization of conformational changes within single MloK1 cyclic nucleotide-modulated channels. Nat Commun 7:12789 (8 pp)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan Y, Miyagi A, Wang X, Chami M, Boudker O, Scheuring S (2017) Direct visualization of glutamate transporter elevator mechanism in substrate transport by high-speed AFM. Proc Natl Acad Sci U S A 114:1584–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakiyama Y, Mazur A, Kapinos LE, Lim RYH (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11:719–723

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nat Nanotechnol 5:208–212

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Uchihashi T, Ando T, Yasuda R (2015) Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells. Sci Rep 5:8724 (7 pp)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shlyakhtenko LS, Lushnikov AY, Miyagi A, Li M, Harris RS, Lyubchenko YL (2013) Atomic force microscopy studies of APOBEC3G oligomerization and dynamics. J Struct Biol 184:217–225

    Article  CAS  PubMed  Google Scholar 

  • Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755−758

  • Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protocols 7:1193–1206

    Article  CAS  PubMed  Google Scholar 

  • Uchihashi T, Watanabe H, Fukuda S, Shibata M, Ando T (2016) Functional extension of high-speed atomic force microscopy. Ultramicroscopy 160:182–196

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Gillespie JR, Fink AL (2000) Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41:415–427

    Article  CAS  PubMed  Google Scholar 

  • Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK (2000) Probing protein–protein interactions in real time. Nat Struct Biol 7:644–647

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Oster G (1998) Energy transduction in the F1 motor of ATP synthase. Nature 396:279–282

    Article  CAS  PubMed  Google Scholar 

  • Wang RY-R, Kudryashev M, Li X, Egelman EH, Basler M, Cheng Y, Baker D, DiMaio F (2015) De novo protein structure determination from near-atomic-resolution cryo-EM maps. Nat Method 12:335–338

    Article  CAS  Google Scholar 

  • Watanabe H, Uchihashi T, Kobashi T, Shibata M, Nishiyama J, Yasuda R, Ando T (2013) Wide-area scanner for high-speed atomic force microscopy. Rev Sci Instrum 84:053702 (10 pp)

    Article  PubMed  Google Scholar 

  • Watanabe-Nakayama T, Ono K, Itami M, Takahashi R, Teplow DB, Yamada M (2016) High-speed atomic force microscopy reveals structural dynamics of amyloid β1-42 aggregates. Proc Natl Acad Sci U S A 113:5835–5840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham SFJ, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield AJ (2011) Direct observation of stepwise movement of a synthetic molecular transporter. Nat Nanotechnol 6:166–169

    Article  CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signaling and regulation. Nat Rev Mol Cell Biol 16:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto D, Ando T (2016) Chaperonin GroEL-GroES functions as both alternating and non-alternating engines. J Mol Biol 428:3090–3101

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto D, Uchihashi T, Kodera N, Yamashita H, Nishikori S, Ogura T, Shibata M, Ando T (2010) High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods Enzymol 475(Part B):541–564

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Fujioka Y, Suzuki SW, Noshiro D, Suzuki H, Kondo-Kakuta C, Kimura Y, Hirano H, Ando T, Noda NN, Ohsumi Y (2016) The intrinsically disordered protein Atg13 mediates supramolecular assembly of autophagy initiation complexes. Dev Cell 38:86–99

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Taoka A, Uchihashi T, Asano T, Ando T, Fukumori Y (2012) Single molecule imaging on living bacterial cell surface by high-speed AFM. J Mol Biol 422:300–309

    Article  CAS  PubMed  Google Scholar 

  • Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, Kandori H, Ando T (2013) Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy. J Struct Biol 184:2–11

    Article  CAS  PubMed  Google Scholar 

  • Yokokawa M, Takeyasu K (2011) Motion of the Ca2+-pump captured. FEBS J 278:3025–3031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JST/CREST (#JPMJCR13M1) and KAKENHI from the Ministry of Education, Culture, Sports, Science and Technology, Japan (#21113002, #24227005 and #26119003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ando.

Ethics declarations

Conflicts of interest

Toshio Ando declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘IUPAB Edinburgh Congress’ edited by Damien Hall

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ando, T. Directly watching biomolecules in action by high-speed atomic force microscopy. Biophys Rev 9, 421–429 (2017). https://doi.org/10.1007/s12551-017-0281-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0281-7

Keywords

Navigation