Skip to main content

Advertisement

Log in

Cardiac stem cells: translation to human studies

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The discovery of multiple classes of cardiac progenitor cells in the adult mammalian heart has generated hope for their use as a therapeutic in heart failure. However, successful results from animal models have not always yielded similar findings in human studies. Recent Phase I/II trials of c-Kit (SCIPIO) and cardiosphere-based (CADUCEUS) cardiac progenitor cells have demonstrated safety and some therapeutic efficacy. Gaps remain in our understanding of the origins, function and relationships between the different progenitor cell families, many of which are heterogeneous populations with overlapping definitions. Another challenge lies in the limitations of small animal models in replicating the human heart. Cryopreserved human cardiac tissue provides a readily available source of cardiac progenitor cells and may help address these questions. We review important findings and relative unknowns of the main classes of cardiac progenitor cells, highlighting differences between animal and human studies

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Lineage markers are found on mature haematopoietic cells and lineage depletion selects for a subpopulation enriched in early progenitor cells not yet expressing lineage markers

Reference

  • Aminzadeh MA, Tseliou E, Sun B, Cheng K, Malliaras K, Makkar RR, Marbán E (2014) Therapeutic efficacy of cardiosphere-derived cells in a transgenic mouse model of non-ischaemic dilated cardiomyopathy. Eur Heart J. doi:10.1093/eurheartj/ehu196. Published Online First: 27 May 2014

    PubMed  Google Scholar 

  • Andersen DC, Andersen P, Schneider M, Jensen HB, Sheikh SP (2009) Murine “cardiospheres” are not a source of stem cells with cardiomyogenic potential. Stem Cells 27:1571–1581

    PubMed  Google Scholar 

  • Bailey B, Fransioli J, Gude NA, Alvarez R, Zhan XX, Gustafsson AB, Sussman MA (2012) Sca-1 knockout impairs myocardial and cardiac progenitor cell function. Circ Res 111:750–760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bax NA et al (2011) Epithelial-to-mesenchymal transformation alters electrical conductivity of human epicardial cells. J Cell Mol Med 15:2675–2683

    CAS  PubMed  Google Scholar 

  • Bearzi C et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bearzi C et al (2009) Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci U S A 106:15885–15890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beltrami AP et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CAS  PubMed  Google Scholar 

  • Bianco P, Robey PG, Simmons PJ (2008) Mesenchymal stem cells: Revisiting history, concepts, and assays. Cell Stem Cell 2:313–319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bolli R et al (2013) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857

    Google Scholar 

  • Bu L et al (2009) Human ISL1 heart progenitors generate diverse multipotent cardiovascular cell lineages. Nature 460:113–U130

    CAS  PubMed  Google Scholar 

  • Cai CL, Liang XQ, Shi YQ, Chu PH, Pfaff SL, Chen J, Evans S (2003) Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 5:877–889

    CAS  PubMed  Google Scholar 

  • Carmona R, Guadix JA, Cano E, Ruiz-Villalba A, Portillo-Sanchez V, Perez-Pomares JM, Munoz-Chapuli R (2010) The embryonic epicardium: an essential element of cardiac development. J Cell Mol Med 14:2066–2072

    CAS  PubMed  Google Scholar 

  • Cassano M et al (2012) Alteration of cardiac progenitor cell potency in GRMD dogs. Cell Transplant 21:1945–1967

    CAS  PubMed  Google Scholar 

  • Castaldo C et al (2008) CD117-positive cells in adult human heart are localized in the subepicardium, and their activation is associated with laminin-1 and alpha6 integrin expression. Stem Cells 26:1723–1731

    CAS  PubMed  Google Scholar 

  • Chan HHL et al (2012) Human cardiosphere-derived cells from patients with chronic ischaemic heart disease can be routinely expanded from atrial but not epicardial ventricular biopsies. J Cardiovasc Transl Res 5:678–687

    PubMed Central  PubMed  Google Scholar 

  • Cheng K, Li TS, Malliaras K, Davis DR, Zhang YQ, Marban E (2010) Magnetic targeting enhances engraftment and functional benefit of iron-labeled cardiosphere-derived cells in myocardial infarction. Circ Res 106:1570–U1554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng K et al (2014) Human cardiosphere-derived cells from advanced heart failure patients exhibit augmented functional potency in myocardial repair. JACC Heart Fail 2:49–61

    PubMed Central  PubMed  Google Scholar 

  • Chimenti I, Smith RR, Li T-S, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106:971–U304

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho HJ et al (2012) Secondary sphere formation enhances the functionality of cardiac progenitor cells. Mol Ther 20:1750–1766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JJH, Murry CE (2014) Cardiac regeneration using pluripotent stem cells - progression to large animal models. Stem Cell Res. doi:10.1016/j.scr.2014.06.005. Published Online First: 6 July 2014

    Google Scholar 

  • Chong JJH et al (2009) Sca1+/CD31−/PDGFRα + cardiac stem cells are from an epicardial/mesodermal but not neural-crest, cardiomyocyte or bone-marrow origin. Heart Lung Circ 18(3):S3

    Google Scholar 

  • Chong JJH et al (2011) Adult cardiac-resident MSC-like stem cells with a proepicardial origin. Cell Stem Cell 9:527–540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JJH, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE (2013) Progenitor cells Identified by PDGFR-alpha expression in the developing and diseased human heart. Stem Cells Dev 22:1932–1943

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chong JJH et al (2014) Human embryonic-stem-cell-derived cardiomyocytesregenerate non-humanprimate hearts. Nature 510:273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Harris DT (2013) Utility of cryopreserved umbilical cord tissue for regenerative medicine. Curr Stem Cell Res Ther 8:370–380

    CAS  PubMed  Google Scholar 

  • Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT (2014) Cryopreservation of whole adipose tissue for future use in regenerative medicine. J Surg Res 187:24–35

    CAS  PubMed  Google Scholar 

  • Christoffels VM, Grieskamp T, Norden J, Mommersteeg MTM, Rudat C, Kispert A (2009) Tbx18 and the fate of epicardial progenitors. Nature 458:E8–E9

    CAS  PubMed  Google Scholar 

  • Clark RA, McLennan S, Eckert K, Dawson A, Wilkinson D, Stewart S (2005) Chronic heart failure beyond city limits. Rural Remote Health 5:443

    PubMed  Google Scholar 

  • Cleland JGF (2000) Improving patient outcomes in heart failure: evidence and barriers. Heart 84:i8–i10

    PubMed Central  PubMed  Google Scholar 

  • Crisan M et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

    CAS  PubMed  Google Scholar 

  • Davis DR et al. (2009) Validation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue. Plos ONE 4

  • Di Meglio F et al (2010) Epithelial–mesenchymal transition of epicardial mesothelium is a source of cardiac CD117-positive stem cells in adult human heart. J Mol Cell Cardiol 49:719–727

    PubMed  Google Scholar 

  • Ding XW, Wu JH, Jiang CP (2010) ABCG2: A potential marker of stem cells and novel target in stern cell and cancer therapy. Life Sci 86:631–637

    CAS  PubMed  Google Scholar 

  • Dixon JA, Spinale FG (2009) Large animal models of heart failure: a critical link in the translation of basic science to clinical practice. Circ Heart Fail 2:262–271

    PubMed Central  PubMed  Google Scholar 

  • Domian IJ et al (2009) Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326:426–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellison GM et al (2013) Adult c-kit(pos) cardiac stem cells are necessary and sufficient for functional cardiac regeneration and repair. Cell 154:827–842

    CAS  PubMed  Google Scholar 

  • Emmert MY et al (2013) Higher frequencies of BCRP + cardiac resident cells in ischaemic human myocardium. Eur Heart J 34:2830–2838

    CAS  PubMed  Google Scholar 

  • Fazel S et al (2006) Cardioprotective c-kit(+) cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. J Clin Investig 116:1865–1877

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferreira-Martins J et al (2012) Cardiomyogenesis in the developing heart is regulated by c-kit-positive cardiac stem cells. Circ Res 110:701–U171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher SA, Brunskill SJ, Doree C, Mathur A, Taggart David P, Martin-Rendon E (2014) Stem cell therapy for chronic ischaemic heart disease and congestive heart failure. Cochrane Database Syst Rev. doi:10.1002/14651858.CD007888.pub2. Issue 4. Art. No.: CD007888. Published Online First: 29 April 2014

    Google Scholar 

  • Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  • Fuentes TI, Appleby N, Tsay E, Martinez JJ, Bailey L, Hasaniya N, Kearns-Jonker M (2013) Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability. PLoS ONE 8:e77464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furtado MB et al (2014) Cardiogenic genes expressed in cardiac fibroblasts contribute to heart development and repair. Circ Res 114:1422–1434

    CAS  PubMed  Google Scholar 

  • Gambini E, Pompilio G, Biondi A, Alamanni F, Capogrossi MC, Agrifoglio M, Pesce M (2011) C-kit(+) cardiac progenitors exhibit mesenchymal markers and preferential cardiovascular commitment. Cardiovasc Res 89:362–373

    CAS  PubMed  Google Scholar 

  • Garbade J et al (2010) There is a clear distribution pattern of viable resident c-kit positive cardiac stem cells in the human heart in patients suffering from ischemic cardiomyopathy. Thorac Cardiovasc Surg 58:MP55

    Google Scholar 

  • Genead R, Danielsson C, Andersson AB, Corbascio M, Franco-Cereceda A, Sylven C, Grinnemo KH (2010) Islet-1 cells are cardiac progenitors present during the entire lifespan: from the embryonic stage to adulthood. Stem Cells Dev 19:1601–1615

    CAS  PubMed  Google Scholar 

  • Genead R et al (2012) Ischemia-reperfusion injury and pregnancy initiate time-dependent and robust signs of up-regulation of cardiac progenitor cells. Plos ONE 7:e36804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    CAS  PubMed  Google Scholar 

  • Hackam DG, Redelmeier DA (2006) Translation of research evidence from animals to humans. JAMA 296:1727–1732. This systematic review graded animal studies published in leading journals on their quality, and followed them up to subsequent human trials. Only a third of these highly cited animal studies were met with successes in human translation. There is therefore an imperative to better assess preclinical research, and human tissues are one way of approximating this gap

    Google Scholar 

  • Hartung T (2013) Look back in anger - what clinical studies tell us about preclinical work. ALTEX 30:275–291

    PubMed Central  PubMed  Google Scholar 

  • He JQ, Vu DM, Hunt G, Chugh A, Bhatnagar A, Bolli R (2011) Human cardiac stem cells isolated from atrial appendages stably express c-kit. PLoS ONE 6:e27719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hematti P (2012) Mesenchymal stromal cells and fibroblasts: a case of mistaken identity? Cytotherapy 14:516–521

    CAS  PubMed  Google Scholar 

  • Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA (2002) The post-natal heart contains a myocardial stem cell population. FEBS Lett 530:239–243

    CAS  PubMed  Google Scholar 

  • Holmes C, Stanford WL (2007) Concise review: Stem cell antigen-1: Expression, function, and enigma. Stem Cells 25:1339–1347

    CAS  PubMed  Google Scholar 

  • Hong KU, Li QH, Guo YR, Patton NS, Moktar A, Bhatnagar A, Bolli R (2013) A highly sensitive and accurate method to quantify absolute numbers of c-kit plus cardiac stem cells following transplantation in mice. Basic Res Cardiol 108:346

    PubMed Central  PubMed  Google Scholar 

  • Hong KU et al (2014) c-kit + cardiac stem cells alleviate post-myocardial infarction left ventricular dysfunction despite poor engraftment and negligible retention in the recipient heart. PLoS ONE 9:e96725

    PubMed Central  PubMed  Google Scholar 

  • Houser SR et al (2012) Animal models of heart failure: A scientific statement from the american heart association. Circ Res 111:131–150

    CAS  PubMed  Google Scholar 

  • Hsiao LC et al (2014) Murine cardiosphere-derived cells are impaired by age but not by cardiac dystrophic dysfunction. Stem Cells Dev 23:1027–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C, Gu H, Yu Q, Manukyan MC, Poynter JA, Wang M (2011) Sca-1+ cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS ONE 6:e29246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jesty SA et al (2012) c-kit(+) precursors support postinfarction myogenesis in the neonatal, but not adult, heart. Proc Natl Acad Sci U S A 109:13380–13385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnston PV et al (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120:1075–U1095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Khattar P et al (2011) Distinction between two populations of islet-1-positive cells in hearts of different murine strains. Stem Cells Dev 20:1043–1052

    PubMed  Google Scholar 

  • Kooij V et al (2014) Sizing up models of heart failure: Proteomics from flies to humans. Proteomics Clin Appl 8:653–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krenning G, Zeisberg EM, Kalluri R (2010) The origin of fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol 225:631–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laflamme MA, Murry CE (2011) Heart regeneration. Nature 473:326–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laugwitz KL et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    CAS  PubMed  Google Scholar 

  • Lee S-T et al (2011) Intramyocardial injection of autologous cardiospheres or cardiosphere-derived cells preserves function and minimizes adverse ventricular remodeling in pigs with heart failure post-myocardial infarction. J Am Coll Cardiol 57:455–465

    PubMed  Google Scholar 

  • Li TS et al (2010) Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells 28:2088–2098

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li TS et al (2012) Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol 59:942–953

    PubMed Central  PubMed  Google Scholar 

  • Li A et al (2013) Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank. Heart Lung Circ 22:819–826. The Sydney Heart Bank provides a wide range of both donor and diseased hearts and is the source of tissue for ongoing cardiac stem cell research. The paper explores the basic characteristics of the preserved hearts and summarises the successful collaborations to date

    PubMed  Google Scholar 

  • Liang SX, Tan TYL, Gaudry L, Chong B (2010) Differentiation and migration of Sca1+/CD31-cardiac side population cells in a murine myocardial ischemic model. Int J Cardiol 138:40–49

    PubMed  Google Scholar 

  • Liang SX, Khachigian LM, Ahmadi Z, Yang M, Liu S, Chong BH (2011) In vitro and in vivo proliferation, differentiation and migration of cardiac endothelial progenitor cells (SCA1(+)/CD31(+) side-population cells). J Thromb Haemost 9:1628–1637

    CAS  PubMed  Google Scholar 

  • Limana F et al (2007) Identification of myocardial and vascular precursor cells in human and mouse epicardium. Circ Res 101:1255–1265

    CAS  PubMed  Google Scholar 

  • Liu J, Wang Y, Du W, Yu B (2013) Sca-1-positive cardiac stem cell migration in a cardiac infarction model. Inflammation 36:738–749

    PubMed  Google Scholar 

  • Luo ZL et al (2014) Genetic variations of ISL1 associated with human congenital heart disease in Chinese Han people. Genet Mol Res 13:1329–1338

    CAS  PubMed  Google Scholar 

  • Makkar RR et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904

    PubMed  Google Scholar 

  • Malliaras K et al (2012) Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–U500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malliaras K et al (2013) Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med 5:191–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mamidi MK et al (2012) Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem 113:3153–3164

    CAS  PubMed  Google Scholar 

  • Marban E, Cingolani E (2012) Heart to heart: Cardiospheres for myocardial regeneration. Heart Rhythm 9:1727–1731

    PubMed  Google Scholar 

  • Marian AJ (2011) Modeling human disease phenotype in model organisms: "It's only a model!". Circ Res 109:356–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin CM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    CAS  PubMed  Google Scholar 

  • Matsuura K et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    CAS  PubMed  Google Scholar 

  • Matsuura K et al (2009) Transplantation of cardiac progenitor cells ameliorates cardiac dysfunction after myocardial infarction in mice. J Clin Investig 119:2204–2217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matuszczak S et al (2014) Characteristic of c-Kit + progenitor cells in explanted human hearts. Clin Res Cardiol 103:711–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meinhardt A, Spicher A, Roehrich ME, Glauche I, Vogt P, Vassalli G (2011) Immunohistochemical and flow cytometric analysis of long-term label-retaining cells in the adult heart. Stem Cells Dev 20:211–222

    CAS  PubMed  Google Scholar 

  • Meissner K et al (2006) The ATP-binding cassette transporter ABCG2 (BCRP), a marker for side population stem cells, is expressed in human heart. J Histochem Cytochem 54:215–221

    CAS  PubMed  Google Scholar 

  • Menasche P et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial - First randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    PubMed  Google Scholar 

  • Messina E et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    CAS  PubMed  Google Scholar 

  • Mishra R et al (2012) Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123:364–373

    Google Scholar 

  • Moretti A et al (2006) Multipotent embryonic Isl1(+) progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    CAS  PubMed  Google Scholar 

  • Moretti A et al (2010) Mouse and human induced pluripotent stem cells as a source for multipotent Isl1(+) cardiovascular progenitors. FASEB J 24:700–711

    CAS  PubMed  Google Scholar 

  • Mouquet F et al (2005) Restoration of cardiac progenitor cells after myocardial infarction by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092

    CAS  PubMed  Google Scholar 

  • Nadal-Ginard B, Ellison GM, Torella D (2014) The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res. doi:10.1016/j.scr.2014.04.008. Published Online First: 29 April 2014

    PubMed  Google Scholar 

  • Oberpriller JO, Oberpriller JC (1974) Response of the adult newt ventricle to injury. J Exp Zool 187:249–253

    CAS  PubMed  Google Scholar 

  • Oh H et al (2003) Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oyama T et al (2007) Cardiac side population cells have a potential to migrate and differentiate into cardiomyocytes in vitro and in vivo. J Cell Biol 176:329–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pandur P, Sirbu IO, Kuhl SJ, Philipp M, Kuhl M (2013) Islet1-expressing cardiac progenitor cells: a comparison across species. Dev Genes Evol 223:117–129

    PubMed Central  PubMed  Google Scholar 

  • Pelekanos RA et al (2012) Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res 8:58–73

    CAS  PubMed  Google Scholar 

  • Pfister O et al (2005) CD31(-) but not CD31(+) cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    CAS  PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    CAS  PubMed  Google Scholar 

  • Rehman J (2013) Bone marrow tinctures for cardiovascular disease lost in translation. Circulation 127:1935–1937

    PubMed  Google Scholar 

  • Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Investig 115:1724–1733

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenblatt-Velin N, Ogay S, Felley A, Stanford WL, Pedrazzini T (2011) Cardiac dysfunction and impaired compensatory response to pressure overload in mice deficient in stem cell antigen-1. FASEB J 26:229–239

    PubMed  Google Scholar 

  • Rota M et al (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circ Res 103:107–116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saha K, Hurlbut JB (2011) Research ethics: Treat donors as partners in biobank research. Nature 478:312–313

    CAS  PubMed  Google Scholar 

  • Sandstedt J et al (2012) Left atrium of the human adult heart contains a population of side population cells. Basic Res Cardiol 107:255

    PubMed  Google Scholar 

  • Sandstedt J, Jonsson M, Dellgren G, Lindahl A, Jeppsson A, Asp J (2014) Human C-kit + CD45-cardiac stem cells are heterogeneous and display both cardiac and endothelial commitment by single-cell qPCR analysis. Biochem Biophys Res Commun 443:234–238

    CAS  PubMed  Google Scholar 

  • Saravanakumar M, Devaraj H (2013) Distribution and homing pattern of c-kit(+) Sca-1(+) CXCR4(+) resident cardiac stem cells in neonatal, postnatal, and adult mouse heart. Cardiovasc Pathol 22:257–263

    CAS  PubMed  Google Scholar 

  • Seo BM, Miura M, Sonoyama W, Coppe C, Stanyon R, Shi S (2005) Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res 84:907–912. Periodontal ligament stem cells were retrieved from cryopreserved human tissue validating the approach of utilising frozen tissue as a source of stem cells. The authors also note preserved differentiation and surface expression of stem cell markers

    PubMed  Google Scholar 

  • Serradifalco C et al (2011) Embryonic and foetal Islet-1 positive cells in human hearts are also positive to c-Kit. Eur J Histochem 55:229–234

    Google Scholar 

  • Shen DL, Cheng K, Marban E (2012) Dose-dependent functional benefit of human cardiosphere transplantation in mice with acute myocardial infarction. J Cell Mol Med 16:2112–2116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shenje LT et al (2008) Lineage tracing of cardiac explant derived cells. Plos ONE 3:e1929

    PubMed Central  PubMed  Google Scholar 

  • Shiba Y et al (2012) Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts. Nature 489:322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siller R, Greenhough S, Park IH, Sullivan GJ (2013) Modelling human disease with pluripotent stem cells. Curr Gene Ther 13:99–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slukvin I (2011) Epicardial origin of cardiac CFU-Fs. Cell Stem Cell 9:492–493

    CAS  PubMed  Google Scholar 

  • Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin beta 4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182

    CAS  PubMed  Google Scholar 

  • Smart N et al (2011) De novo cardiomyocytes from within the activated adult heart after injury. Nature 474:640–U117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smart N, Dube KN, Riley PR (2013) Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vasc Pharmacol 58:164–173

    CAS  Google Scholar 

  • Smith RR et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    PubMed  Google Scholar 

  • Stevens KN et al (2010) Common variation in ISL1 confers genetic susceptibility for human congenital heart disease. Plos ONE 5:e10855

    PubMed Central  PubMed  Google Scholar 

  • Sun YF et al (2007) Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol 304:286–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sussman MA (2012) Myocardial Isl(+) land a place with lots of rhythm, but no beat. Circ Res 110:1267–1269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takamiya M, Haider KH, Ashraf M (2011) Identification and characterization of a novel multipotent sub-population of Sca-1(+) cardiac progenitor cells for myocardial regeneration. Plos ONE 6:e25265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takehara N, Nagata M, Ogata T, Nakamura T, Matoba S, Gojo S, Sawada T, Yaku H, Matsubara H. (2012) The ALCADIA (Autologous Human Cardiac-derived Stem Cell To Treat Ischemic Cardiomyopathy) trial. AHA 2012

  • Tallini YN et al (2009) c-kit expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S A 106:1808–1813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang XL et al (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121:293–U235

    PubMed Central  PubMed  Google Scholar 

  • Tateishi K et al (2007) Clonally amplified cardiac stem cells are regulated by Sca-1 signaling for efficient cardiovascular regeneration. J Cell Sci 120:1791–1800

    CAS  PubMed  Google Scholar 

  • The Lancet E (2014) Expression of concern: the SCIPIO trial. Lancet 383:1279

    Google Scholar 

  • Tseliou E et al (2013) Allogeneic cardiospheres safely boost cardiac function and attenuate adverse remodeling after myocardial infarction in immunologically mismatched rat strains. J Am Coll Cardiol 61:1108–1119

    PubMed  Google Scholar 

  • Tseliou E, de Couto G, Terrovitis J, Sun BM, Liu WX, Marban L, Marban E (2014) Angiogenesis, cardiomyocyte proliferation and anti-fibrotic effects underlie structural preservation post-Infarction by intramyocardially-injected cardiospheres. Plos ONE 9:e88590

    PubMed Central  PubMed  Google Scholar 

  • Uchida S et al (2013) Sca1-derived cells are a source of myocardial renewal in the murine adult heart. Stem Cell Reports 1:397–410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Urbanek K et al (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci U S A 103:9226–9231

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Berlo JH et al (2014) c-kit(+) cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341

    PubMed Central  PubMed  Google Scholar 

  • van Tuyn J et al (2007) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25:271–278

    PubMed  Google Scholar 

  • van Vliet P et al (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Heart J 16:163–169

    PubMed Central  PubMed  Google Scholar 

  • van Vliet P et al (2010) Foetal and adult cardiomyocyte progenitor cells have different developmental potential. J Cell Mol Med 14:861–870

    PubMed  Google Scholar 

  • Vanderijn M, Heimfeld S, Spangrude GJ, Weissman IL (1989) Mouse hematopoietic stem-cell antigen Sca-1 is a member of the LY-6 antigen family. Proc Natl Acad Sci U S A 86:4634–4638

    CAS  Google Scholar 

  • Wada AM, Smith TK, Osler ME, Reese DE, Bader DM (2003) Epicardial/mesothelial cell line retains vasculogenic potential of embryonic epicardium. Circ Res 92:525–531

    CAS  PubMed  Google Scholar 

  • Wang XH, Hu QS, Nakamura Y, Lee J, Zhang G, From AHL, Zhang JY (2006) The role of the Sca-1(+)/CD31(-) cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788

    PubMed  Google Scholar 

  • Weinberger F et al (2012) Localization of Islet-1-positive cells in the healthy and infarcted adult murine heart. Circ Res 110:1303–U1395

    CAS  PubMed  Google Scholar 

  • Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A 276A:43–57

    Google Scholar 

  • Winter EM et al (2009) A new direction for cardiac regeneration therapy: application of synergistically acting epicardium-derived cells and cardiomyocyte progenitor cells. Circ Heart Fail 2:643–653

    PubMed  Google Scholar 

  • Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM, Orkin SH (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    CAS  PubMed  Google Scholar 

  • Xue L et al (2012) ISL1 common variant rs1017 is not associated with susceptibility to congenital heart disease in a Chinese population. Genet Test Mol Biomarkers 16:679–683

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamahara K et al (2008) Heterogeneic nature of adult cardiac side population cells. Biochem Biophys Res Commun 371:615–620

    CAS  PubMed  Google Scholar 

  • Ye JQ et al (2012) Sca-1(+) cardiosphere-derived cells are enriched for Isl1-expressing cardiac precursors and improve cardiac function after myocardial injury. Plos ONE 7:e30329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon J, Choi SC, Park CY, Shim WJ, Lim DS (2007) Cardiac side population cells exhibit endothelial differentiation potential. Exp Mol Med 39:653–662

    CAS  PubMed  Google Scholar 

  • Zhou S et al (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    CAS  PubMed  Google Scholar 

  • Zhou B et al (2008) Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454:109–U105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou B et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Investig 121:1894–1904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou B et al (2012) Thymosin beta 4 treatment after myocardial infarction does not reprogram epicardial cells into cardiomyocytes. J Mol Cell Cardiol 52:43–47

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful for funding from the Bosch Institute.

Conflict of interest

Zijun Ge, Sean Lal, Thi YL Le, Cris dos Remedios, James JH Chong declare that they do not have any conflict of interest regarding the present manuscript.

Human and animal studies

This article does not contain any original studies with either human participants or with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. H. Chong.

Additional information

Special Issue: Biophysics of Human Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Lal, S., Le, T.Y.L. et al. Cardiac stem cells: translation to human studies. Biophys Rev 7, 127–139 (2015). https://doi.org/10.1007/s12551-014-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-014-0148-0

Keywords

Navigation