Skip to main content
Log in

Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

The division of Escherichia coli is an essential process strictly regulated in time and space. It requires the association of FtsZ with other proteins to assemble a dynamic ring during septation, forming part of the functionally active division machinery, the divisome. FtsZ reversibly interacts with FtsA and ZipA at the cytoplasmic membrane to form a proto-ring, the first molecular assembly of the divisome, which is ultimately joined by the rest of the division-specific proteins. In this review we summarize the quantitative approaches used to study the activity, interactions, and assembly properties of FtsZ under well-defined solution conditions, with the aim of furthering our understanding of how the behavior of FtsZ is controlled by nucleotides and physiological ligands. The modulation of the association and assembly properties of FtsZ by excluded-volume effects, reproducing in part the natural crowded environment in which this protein has evolved to function, will be described. The subsequent studies on the reactivity of FtsZ in membrane-like systems using biochemical, biophysical, and imaging technologies are reported. Finally, we discuss the experimental challenges to be met to achieve construction of the minimum protein set needed to initiate bacterial division, without cells, in a cell-like compartment. This integrated approach, combining quantitative and synthetic strategies, will help to support (or dismiss) conclusions already derived from cellular and molecular analysis and to complete our understanding on how bacterial division works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abkarian M, Loiseau E, Massiera G (2011) Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7:4610–4614

    Article  CAS  Google Scholar 

  • Adams DW, Errington J (2009) Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7(9):642–653

    Article  PubMed  CAS  Google Scholar 

  • Ahijado-Guzman R, Gomez-Puertas P, Alvarez-Puebla RA, Rivas G, Liz-Marzan LM (2012) Surface-enhanced raman scattering-based detection of the interactions between the essential cell division ftsz protein and bacterial membrane elements. ACS Nano 6(8):7514–7520

    Article  PubMed  CAS  Google Scholar 

  • Alcorlo M, Jimenez M, Ortega A, Hermoso JM, Salas M, Minton AP, Rivas G (2009) Analytical ultracentrifugation studies of phage phi29 protein p6 binding to DNA. J Mol Biol 385(5):1616–1629

    Article  PubMed  CAS  Google Scholar 

  • Arumugam S, Chwastek G, Schwille P (2011) Protein-membrane interactions: the virtue of minimal systems in systems biology. Wiley Interdiscip Rev Syst Biol Med 3(3):269–280

    Article  PubMed  CAS  Google Scholar 

  • Arumugam S, Chwastek G, Fischer-Friedrich E, Ehrig C, Monch I, Schwille P (2012) Surface topology engineering of membranes for the mechanical investigation of the tubulin homologue FtsZ. Angew Chem 51(47):11858–11862

    Article  CAS  Google Scholar 

  • Attri AK, Minton AP (2005a) Composition gradient static light scattering: a new technique for rapid detection and quantitative characterization of reversible macromolecular hetero-associations in solution. Anal Biochem 346(1):132–138

    Article  PubMed  CAS  Google Scholar 

  • Attri AK, Minton AP (2005b) New methods for measuring macromolecular interactions in solution via static light scattering: basic methodology and application to nonassociating and self-associating proteins. Anal Biochem 337(1):103–110

    Article  PubMed  CAS  Google Scholar 

  • Baciu CL, Becker J, Janshoff A, Sonnichsen C (2008) Protein-membrane interaction probed by single plasmonic nanoparticles. Nano Lett 8(6):1724–1728

    Article  PubMed  CAS  Google Scholar 

  • Bayburt TH, Sligar SG (2010) Membrane protein assembly into nanodiscs. FEBS Lett 584(9):1721–1727

    Article  PubMed  CAS  Google Scholar 

  • Bayley H, Cronin B, Heron A, Holden MA, Hwang WL, Syeda R, Thompson J, Wallace M (2008) Droplet interface bilayers. Mol Biosyst 4(12):1191–1208

    Article  PubMed  CAS  Google Scholar 

  • Chang YY, Cronan JE Jr (1986) Molecular cloning, DNA sequencing, and enzymatic analyses of two Escherichia coli pyruvate oxidase mutants defective in activation by lipids. J Bacteriol 167(1):312–318

    PubMed  CAS  Google Scholar 

  • Chen Y, Erickson HP (2005) Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J Biol Chem 280(23):22549–22554

    Article  PubMed  CAS  Google Scholar 

  • Cisse I, Okumus B, Joo C, Ha T (2007) Fueling protein DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA 104(31):12646–12650

    Article  PubMed  CAS  Google Scholar 

  • Collier CP, Simpson ML (2011) Micro/nanofabricated environments for synthetic biology. Curr Opin Biotechnol 22(4):516–526

    Article  PubMed  CAS  Google Scholar 

  • Devaux PF, Seigneuret M (1985) Specificity of lipid-protein interactions as determined by spectroscopic techniques. Biochim Biophys Acta 822(1):63–125

    Article  PubMed  CAS  Google Scholar 

  • Dix JA, Hom EFY, Verkman AS (2006) Fluorescence correlation spectroscopy simulations of photophysical phenomena and molecular interactions: a molecular dynamics/Monte Carlo approach. J Phys Chem B 110(4):1896–1906

    Article  PubMed  CAS  Google Scholar 

  • Egan AJ, Vollmer W (2013) The physiology of bacterial cell division. Ann N Y Acad Sci 1277(1):8–28

    Article  PubMed  CAS  Google Scholar 

  • Elcock AH (2010) Models of macromolecular crowding effects and the need for quantitative comparisons with experiment. Curr Opin Struct Biol 20(2):196–206

    Article  PubMed  CAS  Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26(10):597–604

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP (2009) Modeling the physics of FtsZ assembly and force generation. Proc Natl Acad Sci USA 106(23):9238–9243

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP, Anderson DE, Osawa M (2010) FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev 74(4):504–528

    Article  PubMed  CAS  Google Scholar 

  • Fodeke AA, Minton AP (2010) Quantitative characterization of polymer-polymer, protein-protein, and polymer-protein interaction via tracer sedimentation equilibrium. J Phys Chem B 114(33):10876–10880

    Article  PubMed  CAS  Google Scholar 

  • Forlin M, Lentini R, Mansy SS (2012) Cellular imitations. Curr Opin Chem Biol 16(5–6):586–592

    Article  PubMed  CAS  Google Scholar 

  • Galush WJ, Shelby SA, Mulvihill MJ, Tao A, Yang P, Groves JT (2009) A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett 9(5):2077–2082

    Article  PubMed  CAS  Google Scholar 

  • Geissler B, Shiomi D, Margolin W (2007) The ftsA* gain-of-function allele of Escherichia coli and its effects on the stability and dynamics of the Z ring. Microbiology 153(Pt 3):814–825

    Article  PubMed  CAS  Google Scholar 

  • González JM, Jiménez M, Vélez M, Mingorance J, Andreu JM, Vicente M, Rivas G (2003) Essential cell division protein FtsZ assembles into one monomer-thick ribbons under conditions resembling the crowded intracellular environment. J Biol Chem 278(39):37664–37671

    Article  PubMed  CAS  Google Scholar 

  • González JM, Velez M, Jiménez M, Alfonso C, Schuck P, Mingorance J, Vicente M, Minton AP, Rivas G (2005) Cooperative behavior of Escherichia coli cell-division protein FtsZ assembly involves the preferential cyclization of long single-stranded fibrils. Proc Natl Acad Sci USA 102(6):1895–1900

    Article  PubMed  CAS  Google Scholar 

  • Goodsell DS (2010) The machinery of life, 2nd edn. Copernicus Books (Springer Science + Business Media), New York

    Google Scholar 

  • Hall D, Minton AP (2003) Macromolecular crowding: qualitative and semiquantitative successes, quantitative challenges. Biochim Biophys Acta 1649(2):127–139

    Article  PubMed  CAS  Google Scholar 

  • Haney SA, Glasfeld E, Hale C, Keeney D, He Z, de Boer P (2001) Genetic analysis of the Escherichia coli FtsZ.ZipA interaction in the yeast two-hybrid system. Characterization of FtsZ residues essential for the interactions with ZipA and with FtsA. J Biol Chem 276(15):11980–11987

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Rocamora VM, García-Montañés C, Rivas G, Llorca O (2012a) Reconstitution of the Escherichia coli cell division ZipA-FtsZ complexes in nanodiscs as revealed by electron microscopy. J Struct Biol 180(3):531–538

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Rocamora VM, Reija B, García C, Natale P, Alfonso C, Minton AP, Zorrilla S, Rivas G, Vicente M (2012b) Dynamic interaction of the Escherichia coli cell division ZipA and FtsZ proteins evidenced in nanodiscs. J Biol Chem 287(36):30097–30104

    Article  PubMed  CAS  Google Scholar 

  • Herrig A, Janke M, Austermann J, Gerke V, Janshoff A, Steinem C (2006) Cooperative adsorption of ezrin on PIP2-containing membranes. Biochemistry 45(43):13025–13034

    Article  PubMed  CAS  Google Scholar 

  • Herzfeld J (2004) Crowding-induced organization in cells: spontaneous alignment and sorting of filaments with physiological control points. J Mol Recognit 17(5):376–381

    Article  PubMed  CAS  Google Scholar 

  • Hyman AA, Simons K (2012) Cell biology. Beyond oil and water–phase transitions in cells. Science 337(6098):1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Kinnunen PK (2006) Biophysical properties of lipids and dynamic membranes. Trends Cell Biol 16(10):538–546

    Article  PubMed  CAS  Google Scholar 

  • Jiao M, Li HT, Chen J, Minton AP, Liang Y (2010) Attractive protein-polymer interactions markedly alter the effect of macromolecular crowding on protein association equilibria. Biophys J 99(3):914–923

    Article  PubMed  CAS  Google Scholar 

  • Jimenez M, Rivas G, Minton AP (2007) Quantitative characterization of weak self-association in concentrated solutions of immunoglobulin G via the measurement of sedimentation equilibrium and osmotic pressure. Biochemistry 46(28):8373–8378

    Article  PubMed  CAS  Google Scholar 

  • Jiménez M, Martos A, Vicente M, Rivas G (2011) Reconstitution and organization of Escherichia coli proto-ring elements (FtsZ and FtsA) inside giant unilamellar vesicles obtained from bacterial inner membranes. J Biol Chem 286(13):11236–11241

    Article  PubMed  CAS  Google Scholar 

  • Keating CD (2012) Aqueous phase separation as a possible route to compartmentalization of biological molecules. Acc Chem Res 45(12):2114–2124

    Article  PubMed  CAS  Google Scholar 

  • Krupka M, Rivas G, Rico AI, Vicente M (2012) Key role of two terminal domains in the bidirectional polymerization of FtsA protein. J Biol Chem 287(10):7756–7765

    Article  PubMed  CAS  Google Scholar 

  • Kuthan H (2001) Self-organisation and orderly processes by individual protein complexes in the bacterial cell. Prog Biophys Mol Biol 75(1–2):1–17

    Article  PubMed  CAS  Google Scholar 

  • Lavalette D, Hink MA, Tourbez M, Tetreau C, Visser AJ (2006) Proteins as micro viscosimeters: brownian motion revisited. Eur Biophys J Biophys Lett 35(6):517–522

    Article  CAS  Google Scholar 

  • Liu AP, Fletcher DA (2009) Biology under construction: in vitro reconstitution of cellular function. Nat Rev 10(9):644–650

    Article  CAS  Google Scholar 

  • Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P (2008) Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science (New York) 320(5877):789–792

    Article  CAS  Google Scholar 

  • Loose M, Fischer-Friedrich E, Herold C, Kruse K, Schwille P (2011a) Min protein patterns emerge from rapid rebinding and membrane interaction of MinE. Nat Struct Mol Biol 18(5):577–583

    Article  PubMed  CAS  Google Scholar 

  • Loose M, Kruse K, Schwille P (2011b) Protein self-organization: lessons from the min system. Annu Rev Biophys 40:315–336

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Montero I, Arriaga LR, Rivas G, Velez M, Monroy F (2010) Lipid domains and mechanical plasticity of Escherichia coli lipid monolayers. Chem Phys Lipids 163(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Montero I, Mateos-Gil P, Sferrazza M, Navajas PL, Rivas G, Velez M, Monroy F (2012) Active membrane viscoelasticity by the bacterial FtsZ-division protein. Langmuir 28(10):4744–4753

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Montero I, Lopez-Navajas P, Mingorance J, Velez M, Vicente M, Monroy F (2013) Membrane reconstruction of FtsZ-ZipA complex inside giant spherical vesicles made of E. coli lipid: large membrane dilation and analysis of membrane plasticity. Biochim Biophys Acta 1828:687–698

    Google Scholar 

  • Lu C, Stricker J, Erickson HP (1998) FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima—quantitation, GTP hydrolysis, and assembly. Cell Motil Cytoskeleton 40(1):71–86

    Article  PubMed  CAS  Google Scholar 

  • Lutkenhaus J, Pichoff S, Du S (2012) Bacterial cytokinesis: from Z ring to divisome. Cytoskeleton (Hoboken) 69(10):778–790

    Article  CAS  Google Scholar 

  • Maeda YT, Nakadai T, Shin J, Uryu K, Noireaux V, Libchaber A (2012) Assembly of MreB filaments on liposome membranes: a synthetic biology approach. ACS Synth Biol 1(2):53–59

    Article  CAS  Google Scholar 

  • Margolin W (2000) Organelle division: self-assembling GTPase caught in the middle. Curr Biol 10(9):R328–R330

    Article  PubMed  CAS  Google Scholar 

  • Marguet M, Sandre O, Lecommandoux S (2012) Polymersomes in “gelly” polymersomes: toward structural cell mimicry. Langmuir 28(4):2035–2043

    Article  PubMed  CAS  Google Scholar 

  • Martino C, Kim SH, Horsfall L, Abbaspourrad A, Rosser SJ, Cooper J, Weitz DA (2012) Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. Angew Chem Int Ed Engl 51:6416–6420

    Google Scholar 

  • Martos A, Alfonso C, López-Navajas P, Ahijado-Guzman R, Mingorance J, Minton AP, Rivas G (2010) Characterization of self-association and heteroassociation of bacterial cell division proteins FtsZ and ZipA in solution by composition gradient-static light scattering. Biochemistry 49(51):10780–10787

    Article  PubMed  CAS  Google Scholar 

  • Martos A, Jimenez M, Rivas G, Schwille P (2012a) Towards a bottom-up reconstitution of bacterial cell division. Trends Cell Biol 22(12):634–643

    Article  PubMed  CAS  Google Scholar 

  • Martos A, Monterroso B, Zorrilla S, Reija B, Alfonso C, Mingorance J, Rivas G, Jimenez M (2012b) Isolation, characterization and lipid-binding properties of the recalcitrant FtsA division protein from Escherichia coli. PLoS One 7(6):e39829

    Article  PubMed  CAS  Google Scholar 

  • Mateos-Gil P, Paez A, Horger I, Rivas G, Vicente M, Tarazona P, Velez M (2012) Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ. Proc Natl Acad Sci USA 109:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Matosevic S (2012) Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology. Bioessays 34(11):992–1001

    Article  PubMed  CAS  Google Scholar 

  • Menendez M, Rivas G, Diaz JF, Andreu JM (1998) Control of the structural stability of the tubulin dimer by one high affinity bound magnesium ion at nucleotide N-site. J Biol Chem 273(1):167–176

    Article  PubMed  CAS  Google Scholar 

  • Mingorance J, Rivas G, Velez M, Gomez-Puertas P, Vicente M (2010) Strong FtsZ is with the force: mechanisms to constrict bacteria. Trends Microbiol 18(8):348–356

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol Cell Biochem 55(2):119–140

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (1990) Holobiochemistry: the effect of local environment upon the equilibria and rates of biochemical reactions. Int J Biochem 22(10):1063–1067

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2000) Implications of macromolecular crowding for protein assembly. Curr Opin Struct Biol 10(1):34–39

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276(14):10577–10580

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119(Pt 14):2863–2869

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2012) Hard quasispherical particle models for the viscosity of solutions of protein mixtures. J Phys Chem B 116(31):9310–9315

    Article  PubMed  CAS  Google Scholar 

  • Minton AP (2013) Quantitative assessment of the relative contributions of steric repulsion and chemical interactions to macromolecular crowding. Biopolymers 99(4):239–244

    Article  PubMed  CAS  Google Scholar 

  • Minton AP, Wilf J (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20(17):4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Monterroso B, Ahijado-Guzman R, Reija B, Alfonso C, Zorrilla S, Minton AP, Rivas G (2012a) Mg(2+)-linked self-assembly of FtsZ in the presence of GTP or a GTP analogue involves the concerted formation of a narrow size distribution of oligomeric species. Biochemistry 51:4541–4550

    Article  PubMed  CAS  Google Scholar 

  • Monterroso B, Rivas G, Minton AP (2012b) An equilibrium model for the Mg(2+)-linked self-assembly of FtsZ in the presence of GTP or a GTP analogue. Biochemistry 51:6108–6113

    Article  PubMed  CAS  Google Scholar 

  • Nagarajan S, Amir D, Grupi A, Goldenberg DP, Minton AP, Haas E (2011) Modulation of functionally significant conformational equilibria in adenylate kinase by high concentrations of trimethylamine oxide attributed to volume exclusion. Biophys J 100(12):2991–2999

    Article  PubMed  CAS  Google Scholar 

  • Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev 62(1):110–129

    PubMed  CAS  Google Scholar 

  • Nath A, Atkins WM, Sligar SG (2007) Applications of phospholipid bilayer nanodiscs in the study of membranes and membrane proteins. Biochemistry 46(8):2059–2069

    Article  PubMed  CAS  Google Scholar 

  • Noireaux V, Maeda YT, Libchaber A (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc Natl Acad Sci USA 108(9):3473–3480

    Article  PubMed  CAS  Google Scholar 

  • Ohashi T, Hale CA, de Boer PA, Erickson HP (2002) Structural evidence that the P/Q domain of ZipA is an unstructured, flexible tether between the membrane and the C-terminal FtsZ-binding domain. J Bacteriol 184(15):4313–4315

    Article  PubMed  CAS  Google Scholar 

  • Osawa M, Erickson HP (2011) Inside-out Z rings–constriction with and without GTP hydrolysis. Mol Microbiol 81(2):571–579

    Article  PubMed  CAS  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ Rings in Liposomes. Science 320(5877):792–794

    Article  PubMed  CAS  Google Scholar 

  • Pazos M, Natale P, Vicente M (2012) A specific role for the ZipA protein in cell division: stabilization of the FtsZ protein. J Biol Chem 288(5):3219–3226

    Article  PubMed  CAS  Google Scholar 

  • Peters RJRW, Louzao I, van Hest JCM (2012) From polymeric nanoreactors to artificial organelles. Chem Sci 3(2):335–342

    Article  CAS  Google Scholar 

  • Phillip Y, Schreiber G (2013) Formation of protein complexes in crowded environments—From in vitro to in vivo. FEBS Lett. doi:10.1016/j.febslet.2013.01.007

    PubMed  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55(6):1722–1734

    Article  PubMed  CAS  Google Scholar 

  • Pichoff S, Shen B, Sullivan B, Lutkenhaus J (2012) FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA’s self-interaction competes with its ability to recruit downstream division proteins. Mol Microbiol 83(1):151–167

    Article  PubMed  CAS  Google Scholar 

  • Popp D, Iwasa M, Narita A, Erickson HP, Maeda Y (2009) FtsZ condensates: an in vitro electron microscopy study. Biopolymers 91(5):340–350

    Article  PubMed  CAS  Google Scholar 

  • Record MT, Courtenay ES, Cayley S, Guttman HJ (1998) Biophysical compensation mechanisms buffering E-coli protein-nucleic acid interactions against changing environments. Trends Biochem Sci 23(5):190–194

    Article  PubMed  CAS  Google Scholar 

  • Reija B, Monterroso B, Jiménez M, Vicente M, Rivas G, Zorrilla S (2011) Development of a homogeneous fluorescence anisotropy assay to monitor and measure FtsZ assembly in solution. Anal Biochem 418(1):89–96

    Article  PubMed  CAS  Google Scholar 

  • Richmond DL, Schmid EM, Martens S, Stachowiak JC, Liska N, Fletcher DA (2011) Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc Natl Acad Sci USA 108(23):9431–9436

    Article  PubMed  CAS  Google Scholar 

  • Rivas G, Minton AP (2004) Non-ideal tracer sedimentation equilibrium: a powerful tool for the characterization of macromolecular interactions in crowded solutions. J Mol Recognit 17(5):362–367

    Article  PubMed  CAS  Google Scholar 

  • Rivas G, Fernandez JA, Minton AP (1999) Direct observation of the self-association of dilute proteins in the presence of inert macromolecules at high concentration via tracer sedimentation equilibrium: theory, experiment, and biological significance. Biochemistry 38(29):9379–9388

    Article  PubMed  CAS  Google Scholar 

  • Rivas G, López A, Mingorance J, Ferrándiz MJ, Zorrilla S, Minton AP, Vicente M, Andreu JM (2000) Magnesium-induced linear self-association of the FtsZ bacterial cell division protein monomer. The primary steps for FtsZ assembly. The J Biol Chem 275(16):11740–11749

    Article  CAS  Google Scholar 

  • Rivas G, Fernandez JA, Minton AP (2001) Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: Indefinite linear self-association of bacterial cell division protein FtsZ. Proc Natl Acad Sci USA 98(6):3150–3155

    Article  PubMed  CAS  Google Scholar 

  • Rueda S, Vicente M, Mingorance J (2003) Concentration and assembly of the division ring proteins FtsZ, FtsA, and ZipA during the Escherichia coli cell cycle. J Bacteriol 185(11):3344–3351

    Article  PubMed  CAS  Google Scholar 

  • Salvarelli E, Krupka M, Rivas G, Vicente M, Mingorance J (2011) Independence between GTPase active sites in the Escherichia coli cell division protein FtsZ. FEBS Lett 585(24):3880–3883

    Article  PubMed  CAS  Google Scholar 

  • Schweizer J, Loose M, Bonny M, Kruse K, Monch I, Schwille P (2012) Geometry sensing by self-organized protein patterns. Proc Natl Acad Sci USA 109(38):15283–15288

    Article  PubMed  CAS  Google Scholar 

  • Sezgin E, Schwille P (2012) Model membrane platforms to study protein-membrane interactions. Mol Membr Biol 29(5):144–154

    Article  PubMed  CAS  Google Scholar 

  • Spitzer J, Poolman B (2009) The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life’s emergence. Microbiol Mol Biol Rev 73(2):371–388

    Article  PubMed  CAS  Google Scholar 

  • Stadler B, Price AD, Chandrawati R, Hosta-Rigau L, Zelikin AN, Caruso F (2009) Polymer hydrogel capsules: en route toward synthetic cellular systems. Nanoscale 1(1):68–73

    Article  PubMed  CAS  Google Scholar 

  • Strauss MP, Liew AT, Turnbull L, Whitchurch CB, Monahan LG, Harry EJ (2012) 3D-SIM super resolution microscopy reveals a bead-like arrangement for FtsZ and the division machinery: implications for triggering cytokinesis. PLoS Biol 10(9):e1001389

    Article  PubMed  CAS  Google Scholar 

  • Stricker J, Maddox P, Salmon ED, Erickson HP (2002) Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci USA 99(5):3171–3175

    Article  PubMed  CAS  Google Scholar 

  • Szwedziak P, Wang Q, Freund SM, Lowe J (2012) FtsA forms actin-like protofilaments. EMBO J 31(10):2249–2260

    Article  PubMed  CAS  Google Scholar 

  • Takiguchi K, Negishi M, Tanaka-Takiguchi Y, Homma M, Yoshikawa K (2011) Transformation of actoHMM assembly confined in cell-sized liposome. Langmuir 27(18):11528–11535

    Article  PubMed  CAS  Google Scholar 

  • Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck WT (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem 49(34):5846–5868

    CAS  Google Scholar 

  • Tonthat NK, Arold ST, Pickering BF, Van Dyke MW, Liang S, Lu Y, Beuria TK, Margolin W, Schumacher MA (2011) Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. EMBO J 30(1):154–164

    Article  PubMed  CAS  Google Scholar 

  • van Oijen AM (2010) Single-molecule approaches to characterizing kinetics of biomolecular interactions. Curr Opin Biotechnol 22(1):75–80

    Article  PubMed  CAS  Google Scholar 

  • Vendeville A, Lariviere D, Fourmentin E (2011) An inventory of the bacterial macromolecular components and their spatial organization. FEMS Microbiol Rev 35(2):395–414

    Article  PubMed  CAS  Google Scholar 

  • Vicente M (2013) Crystal ball: Will test tubes ever undergo division? Microbiol Biotechnol 6:3–16

    Article  Google Scholar 

  • Vicente M, Rico AI (2006) The order of the ring: assembly of Escherichia coli cell division components. Mol Microbiol 61(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Walde P, Cosentino K, Engel H, Stano P (2010) Giant vesicles: preparations and applications. ChemBioChem 11(7):848–865

    Article  PubMed  CAS  Google Scholar 

  • Wilf J, Minton AP (1981) Evidence for protein self-association induced by excluded volume. Myoglobin in the presence of globular proteins. Biochim Biophys Acta 670(3):316–322

    Article  PubMed  CAS  Google Scholar 

  • Wu LJ, Errington J (2012) Nucleoid occlusion and bacterial cell division. Nat Rev Microbiol 10(1):8–12

    CAS  Google Scholar 

  • Zhang B, Zhang Y, Wang Z, Zheng Y (2000) The role of Mg2+ cofactor in the guanine nucleotide exchange and GTP hydrolysis reactions of Rho family GTP-binding proteins. J Biol Chem 275(33):25299–25307

    Article  PubMed  CAS  Google Scholar 

  • Zhou HX (2013) Influence of crowded cellular environments on protein folding, binding, and oligomerization: biological consequences and potentials of atomistic modeling. FEBS Lett. doi:10.1016/j.febslet.2013.01.064

    Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  PubMed  CAS  Google Scholar 

  • Zieske K, Schwille P (2012) Reconstitution of pole-to-pole oscillations of min proteins in microengineered polydimethylsiloxane compartments. Angew Chem 52(1):459–462

    Google Scholar 

  • Zimmerman SB (2006) Shape and compaction of Escherichia coli nucleoids. J Struct Biol 156(2):255–261

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla S, Jimenez M, Lillo P, Rivas G, Minton AP (2004a) Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease. Biophys Chem 108(1–3):89–100

    Article  PubMed  CAS  Google Scholar 

  • Zorrilla S, Rivas G, Acuna AU, Lillo MP (2004b) Protein self-association in crowded protein solutions: a time-resolved fluorescence polarization study. Protein Sci 13(11):2960–2969

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

GR will always be in debt to Allen Minton for his teachings and advice on many aspects of the scientific process, for his motivation and enthusiasm about science and life in general, and for being so generous with his time and knowledge. It is a real privilege to have such an exceptional maestro, a genuine scholar. Thanks for our friendship. The other authors of this review, particularly BM, share these feelings and are deeply grateful to Allen. His frequent visits to our lab have always been very inspirational and educational for all of us.

We also thank the members of our laboratory contributing to the works here reviewed, and Miguel Vicente (CNB-CSIC) for useful discussions and advice on bacterial division. This work was supported by the Spanish government through grants BIO2008-04478-C03 and BIO2011-28941-C03-03 to GR, and BFU2010-14910 and BIO2011-28941-C03-02 to SZ; by the European Commission through contract HEALTH-F3-2009-223432, by the Human Frontiers Science Program through grant RGP0050/2010-C102, and by Comunidad de Madrid through grant S-BIO-0260/2006 to GR; by the CSIC through grants 200980I186 and 201020I001 to SZ and CA, respectively. BM is a JAE postdoctoral associate from the European Social Fund and the Spanish Consejo Superior de Investigaciones Científicas (CSIC).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán Rivas.

Additional information

Special Issue: Protein-Protein and Protein-Ligand Interactions in Dilute and Crowded Solution Conditions. In Honor of Allen Minton’s 70th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivas, G., Alfonso, C., Jiménez, M. et al. Macromolecular interactions of the bacterial division FtsZ protein: from quantitative biochemistry and crowding to reconstructing minimal divisomes in the test tube. Biophys Rev 5, 63–77 (2013). https://doi.org/10.1007/s12551-013-0115-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0115-1

Keywords

Navigation