Skip to main content
Log in

CFTR–SLC26 transporter interactions in epithelia

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Transport mechanisms that mediate the movements of anions must be coordinated tightly in order to respond appropriately to physiological stimuli. This process is of paramount importance in the function of diverse epithelial tissues of the body, such as, for example, the exocrine pancreatic duct and the airway epithelia. Disruption of any of the finely tuned components underlying the transport of anions such as Cl, HCO3 , SCN, and I may contribute to a plethora of disease conditions. In many anion-secreting epithelia, the interactions between the cystic fibrosis transmembrane conductance regulator (CFTR) and solute carrier family 26 (SLC26) transporters determine the final exit of anions across the apical membrane and into the luminal compartment. The molecular identification of CFTR and many SLC26 members has enabled the acquisition of progressively more detailed structural information about these transport molecules. Studies employing a vast array of increasingly sophisticated approaches have culminated in a current working model which places these key players within an interactive complex, thereby setting the stage for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. HCO3 is appreciated as an important buffer of not only the intracellular milieu, but also of fluid secretions. Thyroid hormone synthesis requires the incorporation, and hence the transport of I. SCN secretion by airway epithelia is necessary for the generation of OSCN by interaction with peroxidase-generated H2O2. OSCN has potent anti-microbial action, thereby playing a critical role in innate host airway defense.

  2. DTDST is characterized by skeletal malformations, underscoring the role of SLC26A2 in transporting the substrate (SO4 -2) necessary for the sulfation of cartilage proteoglycans.

References

  • Aravind L, Koonin EV (2000) The STAS domain—a link between anion transporters and antisigma-factor antagonists. Curr Biol 10:R53–R55

    Article  PubMed  CAS  Google Scholar 

  • Babu M, Greenblatt JF, Emili A, Strynadka NC, Reithmeier RA, Moraes TF (2010) Structure of a SLC26 anion transporter STAS domain in complex with acyl carrier protein: implications for E. coli YchM in fatty acid metabolism. Structure 18:1450–1462

    Article  PubMed  CAS  Google Scholar 

  • Baker JM, Hudson RP, Kanelis V, Choy WY, Thibodeau PH, Thomas PJ, Forman-Kay JD (2007) CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nat Struct Mol Biol 14:738–745

    Article  PubMed  CAS  Google Scholar 

  • Baldursson O, Ostedgaard LS, Rokhlina T, Cotten JF, Welsh MJ (2001) Cystic fibrosis transmembrane conductance regulator Cl channels with R domain deletions and translocations show phosphorylation-dependent and -independent activity. J Biol Chem 276:1904–1910

    Article  PubMed  CAS  Google Scholar 

  • Ballard ST, Inglis SK (2004) Liquid secretion properties of airway submucosal glands. J Physiol 556:1–10

    Article  PubMed  CAS  Google Scholar 

  • Carlin RW, Sedlacek RL, Quesnell RR, Pierucci-Alves F, Grieger DM, Schultz BD (2006) PVD9902, a porcine vas deferens epithelial cell line that exhibits neurotransmitter-stimulated anion secretion and expresses numerous HCO3(-) transporters. Am J Physiol Cell Physiol 290:C1560–C1571

    Article  PubMed  CAS  Google Scholar 

  • Chang MH, Plata C, Zandi-Nejad K, Sindic A, Sussman CR, Mercado A, Broumand V, Raghuram V, Mount DB, Romero MF (2009) Slc26a9—anion exchanger, channel and Na+ transporter. J Membr Biol 228:125–140

    Article  PubMed  CAS  Google Scholar 

  • Chappe V, Irvine T, Liao J, Evagelidis A, Hanrahan JW (2005) Phosphorylation of CFTR by PKA promotes binding of the regulatory domain. EMBO J 24:2730–2740

    Article  PubMed  CAS  Google Scholar 

  • Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S (2001) Aberrant CFTR-dependent HCO(3-) transport in mutations associated with cystic fibrosis. Nature 410:94–97

    Article  PubMed  CAS  Google Scholar 

  • Choo-Kang LR, Zeitlin PL (2000) Type I, II, III, IV, and V cystic fibrosis transmembrane conductance regulator defects and opportunities for therapy. Curr Opin Pulm Med 6:521–529

    Article  PubMed  CAS  Google Scholar 

  • Compton EL, Karinou E, Naismith JH, Gabel F, Javelle A (2011) Low resolution structure of a bacterial SLC26 transporter reveals dimeric stoichiometry and mobile intracellular domains. J Biol Chem 286:27058–27067

    Article  PubMed  CAS  Google Scholar 

  • Detro-Dassen S, Schanzler M, Lauks H, Martin I, zu Berstenhorst SM, Nothmann D, Torres-Salazar D, Hidalgo P, Schmalzing G, Fahlke C (2008) Conserved dimeric subunit stoichiometry of SLC26 multifunctional anion exchangers. J Biol Chem 283:4177–4188

    Article  PubMed  CAS  Google Scholar 

  • Devuyst O, Golstein PE, Sanches MV, Piontek K, Wilson PD, Guggino WB, Dumont JE, Beauwens R (1997) Expression of CFTR in human and bovine thyroid epithelium. Am J Physiol 272:C1299–C1308

    PubMed  CAS  Google Scholar 

  • Dorwart MR, Shcheynikov N, Wang Y, Stippec S, Muallem S (2007) SLC26A9 is a Cl(-) channel regulated by the WNK kinases. J Physiol 584:333–345

    Article  PubMed  CAS  Google Scholar 

  • Dorwart MR, Shcheynikov N, Baker JM, Forman-Kay JD, Muallem S, Thomas PJ (2008a) Congenital chloride-losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3. J Biol Chem 283:8711–8722

    Article  PubMed  CAS  Google Scholar 

  • Dorwart MR, Shcheynikov N, Yang D, Muallem S (2008b) The solute carrier 26 family of proteins in epithelial ion transport. Physiol Bethesda 23:104–114

    Article  CAS  Google Scholar 

  • Dosztanyi Z, Chen J, Dunker AK, Simon I, Tompa P (2006) Disorder and sequence repeats in hub proteins and their implications for network evolution. J Proteome Res 5:2985–2995

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (1996) Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ. Cell 85:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Durie PR, Forstner GG (1989) Pathophysiology of the exocrine pancreas in cystic fibrosis. J R Soc Med 82[Suppl 16]:2–10

    PubMed  Google Scholar 

  • Eckford PD, Bear CE (2011) Targeting the regulation of CFTR channels. Biochem J 435:e1–e4

    Article  PubMed  Google Scholar 

  • Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    Article  PubMed  CAS  Google Scholar 

  • Fong P (2011) Thyroid iodide efflux: a team effort? J Physiol 589:5929–5939

    Google Scholar 

  • Gadsby DC, Vergani P, Csanady L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  • Garnett, JP, Hickman, E, Burrows, R, Hegyi, P, Tiszlavicz, L, Cuthbert, AW, Fong, P, Gray, MA (2011) Novel role for pendrin in orchestrating bicarbonate secretion in cystic fibrosis transmembrane conductance regulator (CFTR)-expressing airway serous cells. J Biol Chem 286:41069–41082

  • Gray MA, Harris A, Coleman L, Greenwell JR, Argent BE (1989) Two types of chloride channel on duct cells cultured from human fetal pancreas. Am J Physiol 257:C240–C251

    PubMed  CAS  Google Scholar 

  • Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ, Lefkowitz RJ (1998) A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proc Natl Acad Sci USA 95:8496–8501

    Article  PubMed  CAS  Google Scholar 

  • Hastbacka J, de la Chapelle A, Mahtani MM, Clines G, Reeve-Daly MP, Daly M, Hamilton BA, Kusumi K, Trivedi B, Weaver A et al (1994) The diastrophic dysplasia gene encodes a novel sulfate transporter: positional cloning by fine-structure linkage disequilibrium mapping. Cell 78:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Hegedus T, Serohijos AW, Dokholyan NV, He L, Riordan JR (2008) Computational studies reveal phosphorylation-dependent changes in the unstructured R domain of CFTR. J Mol Biol 378:1052–1063

    Article  PubMed  CAS  Google Scholar 

  • Holmberg C (1986) Congenital chloride diarrhoea. Clin Gastroenterol 15:583–602

    PubMed  CAS  Google Scholar 

  • Ishiguro H, Steward MC, Naruse S, Ko SB, Goto H, Case RM, Kondo T, Yamamoto A (2009) CFTR functions as a bicarbonate channel in pancreatic duct cells. J Gen Physiol 133:315–326

    Article  PubMed  CAS  Google Scholar 

  • Jabba SV, Oelke A, Singh R, Maganti RJ, Fleming S, Wall SM, Everett LA, Green ED, Wangemann P (2006) Macrophage invasion contributes to degeneration of stria vascularis in Pendred syndrome mouse model. BMC Med 4:37

    Article  PubMed  Google Scholar 

  • Kanelis V, Chong PA, Forman-Kay JD (2011) NMR spectroscopy to study the dynamics and interactions of CFTR. Methods Mol Biol 741:377–403

    Article  PubMed  CAS  Google Scholar 

  • Kim KH, Shcheynikov N, Wang Y, Muallem S (2005) SLC26A7 is a Cl- channel regulated by intracellular pH. J Biol Chem 280:6463–6470

    Article  PubMed  CAS  Google Scholar 

  • Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S (2002) A molecular mechanism for aberrant CFTR-dependent HCO3− transport in cystic fibrosis. EMBO J 21:5662–5672

    Article  PubMed  CAS  Google Scholar 

  • Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, Goto H, Naruse S, Soyombo A, Thomas PJ, Muallem S (2004) Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol 6:343–350

    Article  PubMed  CAS  Google Scholar 

  • Kovacs H, Comfort D, Lord M, Campbell ID, Yudkin MD (1998) Solution structure of SpoIIAA, a phosphorylatable component of the system that regulates transcription factor sigmaF of Bacillus subtilis. Proc Natl Acad Sci USA 95:5067–5071

    Article  PubMed  CAS  Google Scholar 

  • Lamprecht G, Heil A, Baisch S, Lin-Wu E, Yun CC, Kalbacher H, Gregor M, Seidler U (2002) The down regulated in adenoma (dra) gene product binds to the second PDZ domain of the NHE3 kinase A regulatory protein (E3KARP), potentially linking intestinal Cl-/HCO3- exchange to Na+/H+ exchange. Biochemistry 41:12336–12342

    Article  PubMed  CAS  Google Scholar 

  • Li C, Naren AP (2005) Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners. Pharmacol Ther 108:208–223

    Article  PubMed  CAS  Google Scholar 

  • Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, Nelson DJ, Tigyi GJ, Naren AP (2005) Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions. J Exp Med 202:975–986

    Article  PubMed  CAS  Google Scholar 

  • Li H, Ganta S, Fong P (2010) Altered ion transport by thyroid epithelia from CFTR(-/-) pigs suggests mechanisms for hypothyroidism in cystic fibrosis. Exp Physiol 95:1132–1144

    Article  PubMed  CAS  Google Scholar 

  • Li, Y, Ganta, S, Fong, P (2012) Endogenous surface expression of F508-CFTR mediates cAMP-stimulated Cl- current in CFTRF508/F508 pig thyroid epithelial cells. Exp Physiol 97:115–124

    Google Scholar 

  • Linsdell P, Tabcharani JA, Rommens JM, Hou YX, Chang XB, Tsui LC, Riordan JR, Hanrahan JW (1997) Permeability of wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride channels to polyatomic anions. J Gen Physiol 110:355–364

    Article  PubMed  CAS  Google Scholar 

  • Lohi H, Lamprecht G, Markovich D, Heil A, Kujala M, Seidler U, Kere J (2003) Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am J Physiol Cell Physiol 284:C769–C779

    PubMed  CAS  Google Scholar 

  • Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Invest 110:1651–1658

    PubMed  CAS  Google Scholar 

  • Makela S, Kere J, Holmberg C, Hoglund P (2002) SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat 20:425–438

    Article  PubMed  CAS  Google Scholar 

  • Melvin JE, Park K, Richardson L, Schultheis PJ, Shull GE (1999) Mouse down-regulated in adenoma (DRA) is an intestinal Cl(-)/HCO(3)(-) exchanger and is up-regulated in colon of mice lacking the NHE3 Na(+)/H(+) exchanger. J Biol Chem 274:22855–22861

    Article  PubMed  CAS  Google Scholar 

  • Mount DB, Romero MF (2004) The SLC26 gene family of multifunctional anion exchangers. Pflugers Arch 447:710–721

    Article  PubMed  CAS  Google Scholar 

  • Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS (2004) Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. J Gen Physiol 124:125–137

    Article  PubMed  CAS  Google Scholar 

  • Muchekehu RW, Quinton PM (2010) A new role for bicarbonate secretion in cervico-uterine mucus release. J Physiol 588:2329–2342

    Article  PubMed  CAS  Google Scholar 

  • Ohana E, Shcheynikov N, Yang D, So I, Muallem S (2011) Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters. J Gen Physiol 137:239–251

    Article  PubMed  CAS  Google Scholar 

  • Ostedgaard LS, Baldursson O, Vermeer DW, Welsh MJ, Robertson AD (2000) A functional R domain from cystic fibrosis transmembrane conductance regulator is predominantly unstructured in solution. Proc Natl Acad Sci USA 97:5657–5662

    Article  PubMed  CAS  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189:867

    Article  PubMed  CAS  Google Scholar 

  • Pasqualetto E, Aiello R, Gesiot L, Bonetto G, Bellanda M, Battistutta R (2010) Structure of the cytosolic portion of the motor protein prestin and functional role of the STAS domain in SLC26/SulP anion transporters. J Mol Biol 400:448–462

    Article  PubMed  CAS  Google Scholar 

  • Patil A, Nakamura H (2006) Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett 580:2041–2045

    Article  PubMed  CAS  Google Scholar 

  • Pendred V (1896). Deaf-mutism and goitre. Lancet 2:532

  • Pierucci-Alves F, Akoyev V, Stewart JC 3rd, Wang LH, Janardhan KS, Schultz BD (2011) Swine models of cystic fibrosis reveal male reproductive tract phenotype at birth. Biol Reprod 85:442–451

    Article  PubMed  CAS  Google Scholar 

  • Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91:5340–5344

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Howitt SM (2011) The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters. Biochem Cell Biol 89:178–188

    Article  PubMed  CAS  Google Scholar 

  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK (2007) Intrinsic disorder and functional proteomics. Biophys J 92:1439–1456

    Article  PubMed  CAS  Google Scholar 

  • Rich DP, Berger HA, Cheng SH, Travis SM, Saxena M, Smith AE, Welsh MJ (1993) Regulation of the cystic fibrosis transmembrane conductance regulator Cl- channel by negative charge in the R domain. J Biol Chem 268:20259–20267

    PubMed  CAS  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    Article  PubMed  CAS  Google Scholar 

  • Rouached H, Berthomieu P, El Kassis E, Cathala N, Catherinot V, Labesse G, Davidian JC, Fourcroy P (2005) Structural and functional analysis of the C-terminal STAS (sulfate transporter and anti-sigma antagonist) domain of the Arabidopsis thaliana sulfate transporter SULTR1.2. J Biol Chem 280:15976–15983

    Article  PubMed  CAS  Google Scholar 

  • Schaenzler M, Fahlke C (2011) Anion transport by the cochlear motor protein prestin. J Physiol. doi: 10.1113/jphysiol.2011.209577

  • Seavers PR, Lewis RJ, Brannigan JA, Verschueren KH, Murshudov GN, Wilkinson AJ (2001) Structure of the Bacillus cell fate determinant SpoIIAA in phosphorylated and unphosphorylated forms. Structure 9:605–614

    Article  PubMed  CAS  Google Scholar 

  • Seidler U, Singh A, Chen M, Cinar A, Bachmann O, Zheng W, Wang J, Yeruva S, Riederer B (2009a) Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension. Exp Physiol 94:175–179

    Article  PubMed  CAS  Google Scholar 

  • Seidler U, Singh AK, Cinar A, Chen M, Hillesheim J, Hogema B, Riederer B (2009b) The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Ann N Y Acad Sci 1165:249–260

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Rigby AC, Alper SL (2011a) STAS domain structure and function. Cell Physiol Biochem 28:407–422

    Article  PubMed  CAS  Google Scholar 

  • Sharma AK, Ye L, Baer CE, Shanmugasundaram K, Alber T, Alper SL, Rigby AC (2011b) Solution structure of the guanine nucleotide-binding STAS domain of SLC26-related SulP protein Rv1739c from Mycobacterium tuberculosis. J Biol Chem 286:8534–8544

    Article  PubMed  CAS  Google Scholar 

  • Shcheynikov N, Wang Y, Park M, Ko SB, Dorwart M, Naruse S, Thomas PJ, Muallem S (2006) Coupling modes and stoichiometry of Cl-/HCO3- exchange by slc26a3 and slc26a6. J Gen Physiol 127:511–524

    Article  PubMed  CAS  Google Scholar 

  • Shcheynikov N, Yang D, Wang Y, Zeng W, Karniski LP, So I, Wall SM, Muallem S (2008) The Slc26a4 transporter functions as an electroneutral Cl-/I-/HCO3- exchanger: role of Slc26a4 and Slc26a6 in I- and HCO3- secretion and in regulation of CFTR in the parotid duct. J Physiol 586:3813–3824

    Article  PubMed  CAS  Google Scholar 

  • Sheng M, Sala C (2001) PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 24:1–29

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Grossman AR (2004) Probing the function of STAS domains of the Arabidopsis sulfate transporters. J Biol Chem 279:30791–30799

    Article  PubMed  CAS  Google Scholar 

  • Shibagaki N, Grossman AR (2006) The role of the STAS domain in the function and biogenesis of a sulfate transporter as probed by random mutagenesis. J Biol Chem 281:22964–22973

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Wangemann P (2008) Free radical stress-mediated loss of Kcnj10 protein expression in stria vascularis contributes to deafness in Pendred syndrome mouse model. Am J Physiol Renal Physiol 294:F139–F148

    Article  PubMed  CAS  Google Scholar 

  • Siwiak, M, Edelman, A, Zielenkiewicz, P (2012) Structural models of CFTR-AMPK and CFTR-PKA interactions: R-domain flexibility is a key factor in CFTR regulation. J Mol Model 188:83–90

    Google Scholar 

  • Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77

    Article  PubMed  CAS  Google Scholar 

  • Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377–409

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Hug MJ, Lewarchik CM, Yun CH, Bradbury NA, Frizzell RA (2000) E3KARP mediates the association of ezrin and protein kinase A with the cystic fibrosis transmembrane conductance regulator in airway cells. J Biol Chem 275:29539–29546

    Article  PubMed  CAS  Google Scholar 

  • Superti-Furga A, Hastbacka J, Wilcox WR, Cohn DH, van der Harten HJ, Rossi A, Blau N, Rimoin DL, Steinmann B, Lander ES, Gitzelmann R (1996) Achondrogenesis type IB is caused by mutations in the diastrophic dysplasia sulphate transporter gene. Nat Genet 12:100–102

    Article  PubMed  CAS  Google Scholar 

  • van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ (2006) The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147:1287–1296

    Article  PubMed  Google Scholar 

  • Wang S, Raab RW, Schatz PJ, Guggino WB, Li M (1998) Peptide binding consensus of the NHE-RF-PDZ1 domain matches the C-terminal sequence of cystic fibrosis transmembrane conductance regulator (CFTR). FEBS Lett 427:103–108

    Article  PubMed  CAS  Google Scholar 

  • Wang XF, Zhou CX, Shi QX, Yuan YY, Yu MK, Ajonuma LC, Ho LS, Lo PS, Tsang LL, Liu Y, Lam SY, Chan LN, Zhao WC, Chung YW, Chan HC (2003) Involvement of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Nat Cell Biol 5:902–906

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson DJ, Strong TV, Mansoura MK, Wood DL, Smith SS, Collins FS, Dawson DC (1997) CFTR activation: additive effects of stimulatory and inhibitory phosphorylation sites in the R domain. Am J Physiol 273:L127–L133

    PubMed  CAS  Google Scholar 

  • Xie J, Adams LM, Zhao J, Gerken TA, Davis PB, Ma J (2002) A short segment of the R domain of cystic fibrosis transmembrane conductance regulator contains channel stimulatory and inhibitory activities that are separable by sequence modification. J Biol Chem 277:23019–23027

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Penmatsa H, Ren A, Punchihewa C, Lemoff A, Yan B, Fujii N, Naren AP (2011) Functional regulation of cystic fibrosis transmembrane conductance regulator-containing macromolecular complexes: a small-molecule inhibitor approach. Biochem J 435:451–462

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Fong lab is currently funded by the National Institutes of Health (COBRE NIH-P20-RR017686; Project 2) from the IDEA Program of the National Center for Research Resources, as well as an Innovative Research Award from the Kansas State University/Johnson Center for Basic Cancer Research (RFEES1). The contents of this work are solely the responsibility of the author and do not necessarily represent the official views of the Center of Biomedical Research Excellence for Epithelial Function in Health and Disease or NIH.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peying Fong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fong, P. CFTR–SLC26 transporter interactions in epithelia. Biophys Rev 4, 107–116 (2012). https://doi.org/10.1007/s12551-012-0068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0068-9

Keywords

Navigation