Skip to main content
Log in

Evidence of ochratoxin A conjugates in urine samples from infants and adults

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA), a mycotoxin with nephrotoxic and carcinogenic properties, is an important contaminant of food and feed. Analysis of OTA in human biological fluids (blood, urine, or breast milk) has documented frequent exposure to this mycotoxin, yet at quite variable levels in different population groups across the world. Urine is the preferred matrix in biomonitoring since sample collection is non-invasive and better accepted by study participants. As only a small fraction of the ingested OTA is excreted in urine, determination of urinary OTA requires sensitive analytical techniques, and phase-II-metabolites should be also considered as biomarkers of exposure. Yet, data published so far on the presence of OTA-glucuronide/sulfate in human urine have been contradictory. In this study, urines (n = 38) from two groups of breastfed infants (German and Turkish) and from German adults were now analysed for the presence of OTA glucuronides or sulfates by an indirect method, i.e. by comparing the levels of OTA (aglycone) in urines without and after enzymatic hydrolysis with ß-glucuronidase/arylsulfatase. Additionally, ochratoxin A-8-β-glucuronide and open lactone ochratoxin A-8-β-glucuronide were synthesized to serve as reference materials for metabolite analysis. Attempts for definitive confirmation of glucuronides of OTA via direct identification in LC–MS/MS analysis were hampered by the lower ionizability of the conjugates compared to the parent compound. Considerable increases in OTA levels were found after enzymatic hydrolysis in several (not all) urine samples and provide clear evidence for the excretion of OTA-conjugates. The latter observation is of importance, since OTA phase-II-metabolites may escape detection when direct methods are applied for urinary biomarker analysis. In conclusion, enzymatic hydrolysis of urine samples is highly advisable in order to avoid an underestimation of the OTA-exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali N, Blaszkewicz M, Manirujjaman M, Degen GH (2016) Biomonitoring of concurrent exposure to ochratoxin A and citrinin in pregnant women in Bangladesh. Mycotoxin Res:1–10

  • Angerer J, Ewers U, Wilhelm M (2007) Human biomonitoring: state of the art. Int J Hyg Environ Health 210(3):201–228

    Article  CAS  PubMed  Google Scholar 

  • Brera C, Caputi R, Miraglia M, Iavicoli I, Salerno A, Carelli G (2002) Exposure assessment to mycotoxins in workplaces: aflatoxins and ochratoxin A occurrence in airborne dusts and human sera. Microchem J 73(1):167–173

    Article  CAS  Google Scholar 

  • Castegnaro M, Maru V, Petkova-Bocharova T, Nikolov I, Bartsch H (1991) Concentrations of ochratoxin A in the urine of endemic nephropathy patients and controls in Bulgaria: lack of detection of 4-hydroxyochratoxin A. IARC Scie Publ (115):165–169

  • Coffman BL, King CD, Rios GR, Tephly TR (1998) The glucuronidation of opioids, other xenobiotics, and androgens by human UGT2B7Y(268) and UGT2B7H(268). Drug Metab Dispos 26(1):73–77

    CAS  PubMed  Google Scholar 

  • Coronel M, Marin S, Tarragó M, Cano-Sancho G, Ramos A, Sanchis V (2011a) Ochratoxin A and its metabolite ochratoxin alpha in urine and assessment of the exposure of inhabitants of Lleida, Spain. Food Chem Toxico 49(6):1436–1442

    Article  CAS  Google Scholar 

  • Coronel M, Sanchis V, Ramos A, Marin S (2011b) Ochratoxin A in adult population of Lleida, Spain: presence in blood plasma and consumption in different regions and seasons. Food Chem Toxicol 49(10):2697–2705

    Article  CAS  PubMed  Google Scholar 

  • Cramer B, Königs M, Humpf H-U (2008) Identification and in vitro cytotoxicity of ochratoxin a degradation products formed during coffee roasting. J Agr Food Chem 56(14):5673–5681

    Article  CAS  Google Scholar 

  • Cramer B, Osteresch B, Muñoz KA, Hillmann H, Sibrowski W, Humpf HU (2015) Biomonitoring using dried blood spots: detection of ochratoxin A and its degradation product 2′R-ochratoxin A in blood from coffee drinkers. Mol Nutr Food Res 59(9):1837–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croom E (2012) Chapter three—metabolism of xenobiotics of human environments. In: Ernest H (ed) Progress in molecular biology and translational science, vol 112. Academic Press, p 31–88

  • Degen G (2011) Tools for investigating workplace-related risks from mycotoxin exposure. World Mycotoxin J 4(3):315–327

    Article  Google Scholar 

  • Degen GH (2015) Are we ready to estimate daily ochratoxin A intake based on urinary concentrations? Environ Int. in press. doi:10.1016/j.envint.2015.10.010)

  • Degen G, Muñoz K, Hengstler J (2013) Occurrence of mycotoxins in breast milk. Handbook of dietary and nutritional aspects of human breast milk. Wageningen Academic Publishers, Wageningen, pp. 813–831

    Book  Google Scholar 

  • di Giuseppe R, Bertuzzi T, Rossi F et al (2012) Plasma ochratoxin A levels, food consumption, and risk biomarkers of a representative sample of men and women from the Molise region in Italy. Eur J Nutr 51(7):851–860. doi:10.1007/s00394-011-0265-5

    Article  PubMed  Google Scholar 

  • Duarte SC, Pena A, Lino CM (2011) Human ochratoxin A biomarkers—from exposure to effect. Crit Rev Toxicol 41(3):187–212

    Article  PubMed  Google Scholar 

  • EFSA (2006) Opinion of the scientific panel on contaminants in the food chain on a request from the commission related to ochratoxin A in food. The EFSA Journal 365:56

    Google Scholar 

  • Ezekiel CN, Warth B, Ogara IM et al (2014) Mycotoxin exposure in rural residents in northern Nigeria: a pilot study using multi-urinary biomarkers. Environ Int 66:138–145

    Article  CAS  PubMed  Google Scholar 

  • Gareis M, Meussdoerffer F (2000) Dust of grains and malts as a source of ochratoxin a exposure. Mycotoxin Res 16(1):127–130

    Article  PubMed  Google Scholar 

  • Gerding J, Cramer B, Humpf HU (2014) Determination of mycotoxin exposure in Germany using an LC-MS/MS multibiomarker approach. Mol Nutr Food Res 58(12):2358–2368. doi:10.1002/mnfr.201400406

    Article  CAS  PubMed  Google Scholar 

  • Gilbert J, Brereton P, MacDonald S (2001) Assessment of dietary exposure to ochratoxin A in the UK using a duplicate diet approach and analysis of urine and plasma samples. Food Addit Contam 18(12):1088–1093

    Article  CAS  PubMed  Google Scholar 

  • Gross-Steinmeyer K, Weymann J, Hege HG, Metzler M (2002) Metabolism and lack of DNA reactivity of the mycotoxin ochratoxin a in cultured rat and human primary hepatocytes. J Agr Food Chem 50(4):938–945

    Article  CAS  Google Scholar 

  • Halstensen AS, Nordby K-C, Elen O, Eduard W (2004) Ochratoxin a in grain dust- estimated exposure and relations to agricultural practices in grain production. Ann Agric Environ Med 11(2):245–254

    CAS  PubMed  Google Scholar 

  • Han Z, Tangni E, Di Mavungu J et al (2013) In vitro glucuronidation of ochratoxin A by rat liver microsomes. Toxins 5(12):2671

    Article  PubMed  PubMed Central  Google Scholar 

  • Heyndrickx E, Sioen I, Huybrechts B, Callebaut A, De Henauw S, De Saeger S (2015) Human biomonitoring of multiple mycotoxins in the Belgian population: results of the BIOMYCO study. Environ Int 84:82–89. doi:10.1016/j.envint.2015.06.011

    Article  CAS  PubMed  Google Scholar 

  • Iavicoli I, Brera C, Carelli G, Caputi R, Marinaccio A, Miraglia M (2002) External and internal dose in subjects occupationally exposed to ochratoxin A. Int Arch Occup Envi 75(6):381–386

    Article  CAS  Google Scholar 

  • Jonsyn FE (1999) Intake of aflatoxins and ochratoxins by infants in Sierra Leone: possible effects on the general health of these children. J Nutr Environ Med 9(1):15–22. doi:10.1080/13590849961799

    Article  Google Scholar 

  • Jonsyn FE, Maxwell SM, Hendrickse RG (1995) Ochratoxin a and aflatoxins in breast milk samples from Sierra Leone. Mycopathologia 131(2):121–126

    Article  CAS  PubMed  Google Scholar 

  • Jonsyn-Ellis FE (2001) Seasonal variation in exposure frequency and concentration levels of aflatoxins and ochratoxins in urine samples of boys and girls. Mycopathologia 152(1):35–40

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen K (2005) Occurrence of ochratoxin A in commodities and processed food—a review of EU occurrence data. Food Addit Contam 22(s1):26–30

    Article  PubMed  Google Scholar 

  • Klapec T, Šarkanj B, Banjari I, Strelec I (2012) Urinary ochratoxin A and ochratoxin alpha in pregnant women. Food Chem Toxicol 50(12):4487–4492

    Article  CAS  PubMed  Google Scholar 

  • Koenigs W, Knorr E (1901) Ueber einige derivate des traubenzuckers und der galactose. Ber Dtsch Chem Ges 34(1):957–981

    Article  Google Scholar 

  • Kühn I, Valenta H, Rohr K (1995) Determination of ochratoxin A in bile of swine by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 668(2):333–337

    Article  Google Scholar 

  • Kuiper-Goodman T (1995) Mycotoxins: risk assessment and legislation. Toxicol Lett 82:853–859

    Article  PubMed  Google Scholar 

  • Makun HA, Adeniran AL, Mailafiya SC et al (2013) Natural occurrence of ochratoxin A in some marketed Nigerian foods. Food Control 31(2):566–571. doi:10.1016/j.foodcont.2012.09.043

    Article  CAS  Google Scholar 

  • Malir F, Ostry V, Dofkova M, Roubal T, Dvorak V, Dohnal V (2013) Ochratoxin A levels in blood serum of Czech women in the first trimester of pregnancy and its correspondence with dietary intake of the mycotoxin contaminant. Biomarkers 18(8):673–678. doi:10.3109/1354750x.2013.845609

    Article  CAS  PubMed  Google Scholar 

  • Märtlbauer E, Usleber E, Dietrich R, Schneider E (2009) Ochratoxin A in human blood serum—retrospective long-term data. Mycotoxin Res 25(4):175–186

    Article  PubMed  Google Scholar 

  • Micco C, Miraglia M, Brera C, Corneli S, Ambruzzi A (1995) Evaluation of ochratoxin A level in human milk in Italy. Food Addit Contam 12(3):351–354

    Article  CAS  PubMed  Google Scholar 

  • Muñoz K (2012) Development of biomonitoring methods for the mycotoxin ochratoxin A and their application to assess infants’ exposure with human milk. Dissertation, Technische Universität Dortmund

  • Muñoz K, Blaszkewicz M, Campos V, Vega M, Degen GH (2014) Exposure of infants to ochratoxin A with breast milk. Arch Toxicol 88(3):837–846. doi:10.1007/s00204-013-1168-4

    PubMed  Google Scholar 

  • Muñoz K, Blaszkewicz M, Degen GH (2010) Simultaneous analysis of ochratoxin A and its major metabolite ochratoxin alpha in plasma and urine for an advanced biomonitoring of the mycotoxin. J Chromatogr B Analyt Technol Biomed Life Sci 878(27):2623–2629. doi:10.1016/j.jchromb.2009.11.044

    Article  PubMed  Google Scholar 

  • Muñoz K, Vega M, Rios G, Munoz S, Madariaga R (2006) Preliminary study of ochratoxin A in human plasma in agricultural zones of Chile and its relation to food consumption. Food Chem Toxicol 44(11):1884–1889. doi:10.1016/j.fct.2006.06.008

    Article  PubMed  Google Scholar 

  • Njumbe Ediage E, Diana Di Mavungu J, Song S, Sioen I, De Saeger S (2013) Multimycotoxin analysis in urines to assess infant exposure: a case study in Cameroon. Environ Int 57–58:50–59. doi:10.1016/j.envint.2013.04.002

    Article  PubMed  Google Scholar 

  • Osteresch B, Cramer B, Humpf H-U (2016) Analysis of ochratoxin A in dried blood spots—correlation between venous and finger-prick blood, the influence of hematocrit and spotted volume. J Chromatogr B 1020:158–164

    Article  CAS  Google Scholar 

  • Pena A, Seifrtova M, Lino C, Silveira I, Solich P (2006) Estimation of ochratoxin A in Portuguese population: new data on the occurrence in human urine by high performance liquid chromatography with fluorescence detection. Food Chem Toxicol 44(9):1449–1454. doi:10.1016/j.fct.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  • Richard JL, Plattner RD, May J, Liska SL (1999) The occurrence of ochratoxin A in dust collected from a problem household. Mycopathologia 146(2):99–103

    Article  CAS  PubMed  Google Scholar 

  • Roth A, Chakor K, EkuéCreepy E, Kane A, Roschenthaler R, Dirheimer G (1988) Evidence for an enterohepatic circulation of ochratoxin A in mice. Toxicology 48(3):293–308

    Article  CAS  PubMed  Google Scholar 

  • Scott PM (2005) Biomarkers of human exposure to ochratoxin A. Food Addit Contam 22(Suppl 1):99–107. doi:10.1080/02652030500410315

    Article  CAS  PubMed  Google Scholar 

  • Solfrizzo M, Gambacorta L, Lattanzio VT, Powers S, Visconti A (2011) Simultaneous LC–MS/MS determination of aflatoxin M1, ochratoxin A, deoxynivalenol, de-epoxydeoxynivalenol, α and β-zearalenols and fumonisin B1 in urine as a multi-biomarker method to assess exposure to mycotoxins. Anal Bioanal Chem 401(9):2831–2841. doi:10.1007/s00216-011-5354-z

    Article  CAS  PubMed  Google Scholar 

  • Stazi F, Palmisano G, Turconi M, Clini S, Santagostino M (2004) Accelerated Koenigs-Knorr glucuronidation of a deactivated nitrophenol: unveiling the role of polyamine additive 1,1,4,7,10,10-hexamethyltriethylenetetramine through design of experiments. J Org Chem 69(4):1097–1103. doi:10.1021/jo035285n

    Article  CAS  PubMed  Google Scholar 

  • Studer-Rohr I, Schlatter J, Dietrich DR (2000) Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Arch Toxicol 74(9):499–510

    Article  CAS  PubMed  Google Scholar 

  • Turner PC, White KL, Burley VJ et al (2010) A comparison of deoxynivalenol intake and urinary deoxynivalenol in UK adults. Biomarkers 15(6):553–562

    Article  CAS  PubMed  Google Scholar 

  • Valenta H, Kühn I, Rohr K (1993) Determination of ochratoxin A in urine and faeces of swine by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 613(2):295–302

    Article  CAS  Google Scholar 

  • van Egmond HP (2002) Worldwide regulations for mycotoxins. Adv Exp Med Biol 504:257–269

    Article  PubMed  Google Scholar 

  • Vatinno R, Aresta A, Zambonin CG, Palmisano F (2007) Determination of ochratoxin A in human urine by solid-phase microextraction coupled with liquid chromatography-fluorescence detection. J Pharm Biomed Anal 44(4):1014–1018. doi:10.1016/j.jpba.2007.04.008

    Article  CAS  PubMed  Google Scholar 

  • Wagacha JM, Muthomi JW (2008) Mycotoxin problem in Africa: current status, implications to food safety and health and possible management strategies. Int J Food Microbiol 124(1):1–12. doi:10.1016/j.ijfoodmicro.2008.01.008

    Article  CAS  PubMed  Google Scholar 

  • Walker R (2002) Risk assessment of ochratoxin: current views of the European Scientific Committee on Food, the JECFA and the Codex Committee on Food Additives and Contaminants Mycotoxins and Food Safety. Springer, p:249–255

  • Warth B, Sulyok M, Fruhmann P et al (2012) Assessment of human deoxynivalenol exposure using an LC-MS/MS based biomarker method. Toxicol Lett 211(1):85–90. doi:10.1016/j.toxlet.2012.02.023

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Madhyastha S, Marquardt RR et al (1996) Toxicity of ochratoxin A, its opened lactone form and several of its analogs: structure–activity relationships. Toxicol Appl Pharmacol 137(2):182–192

    Article  CAS  PubMed  Google Scholar 

  • Zemplén G, Pacsu E (1929) Über die Verseifung acetylierter Zucker und verwandter Substanzen. Ber Dtsch Chem Ges (A and B Series) 62(6):1613–1614

    Article  Google Scholar 

Download references

Acknowledgment

The authors want to thank Iris Glaeser (IfADo) for their technical help and Dr. Meinolf Blaszkewicz for his comments on an earlier version of this manuscript. Finally, we want to thank DAAD and CONICYT for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muñoz.

Ethics declarations

Conflict of interest

None

Source of funding

This study was funded by Leibniz Research Centre for Working Environment and Human Factors (IfADo).

Electronic supplementary material

ESM 1

(DOCX 55 kb)

Chromatograms of the MRM-transitions of the reference solutions for open lactone ochratoxin A-8-O-β-glucuronide and ochratoxin A-8-O-β-glucuronide as well as product ion spectra of both compounds are provided.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, K., Cramer, B., Dopstadt, J. et al. Evidence of ochratoxin A conjugates in urine samples from infants and adults. Mycotoxin Res 33, 39–47 (2017). https://doi.org/10.1007/s12550-016-0261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-016-0261-y

Keywords

Navigation