Skip to main content

Advertisement

Log in

Early Maastrichtian benthos of the chalk at Kronsmoor, northern Germany: implications for Late Cretaceous environmental change

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

Lower Maastrichtian strata (Belemnella obtusa and lower–middle B elemnella sumensis cephalopod biozones) at the Saturn quarry near Kronsmoor (northern Germany) were logged and sampled in detail (33 bulk samples of about 6 kg each) for high-resolution quantitative palaeoecological analysis of the benthic fauna. Following standardised preparation, the size fractions 500 μm–1 mm and >1 mm were considered, documenting a diverse benthic assemblage of bryozoans, brachiopods, bivalves, various echinoid taxa, asteroids, ophiuroids, crinoids, sponges, small-sized sabellids and serpulids, cirripedes and foraminifera. A general, gradual up-section increase in the abundance of benthic faunas was recognised. Furthermore, from the lower to the upper part of the section, epifaunal suspension feeders became more dominant as the mobile guilds (epifaunal and shallow infaunal) saw a reduction in numbers. These observations parallel results obtained from low-resolution macrofossil analyses of this interval that documented an impoverished lower and a rich upper assemblage, the latter clearly dominated by epifaunal suspension feeders. Palaeoecological data of benthic community relicts at Kronsmoor are indicative of increased nutrient availability during the early Maastrichtian. However, in the absence of any evidence of increased productivity in the overlying photic zone (calcareous nannofossil data), a lateral input (upwelling) of nutrient-rich waters onto the shelf to fuel the benthic ecosystem has to be considered. This view is supported by records of contemporaneous changes in latest Cretaceous ocean circulation that followed the latest Campanian cooling event, inclusive of a southward spread of waters of intermediate depth from high latitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aberhan, M. (1994). Guild-structure and evolution of Mesozoic benthic shelf communities. PALAIOS, 9, 516–545.

    Article  Google Scholar 

  • Allison, P. A., Wignall, P. B., & Brett, C. E. (1995). Palaeo-oxygenation: effects and recognition. In D. W. Bosence & P. A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (pp. 97–112). London: Geological Society London Special Publication 83.

    Google Scholar 

  • APH. (2006). Fossilien aus dem Campan von Hannover (p. 290). Hannover: Schäfer.

    Google Scholar 

  • Baldschuhn, R., Best, G., & Kockel, F. (1991). Inversion tectonics in the north-west German basin. In A. M. Spencer (Ed.), Generation, accumulation and production of Europe's hydrocarbon (pp. 149–159). Oxford: European Association of Petroleum Geoscientists.

    Google Scholar 

  • Baldschuhn, R., Binot, F., Fleig, S., & Kockel, F. (2001). Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor – Strukturen, Strukturentwicklung, Paläogeographie. Geologisches Jahrbuch, A, 153, 15–88.

    Google Scholar 

  • Bambach, R. K. (1983). Ecospace utilization and guilds in marine communities through the Phanerozoic. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 719–746). New York: Plenum Press.

    Chapter  Google Scholar 

  • Barrera, E., & Savin, S. M. (1999). Evolution of late Campanian–Maastrichtian marine climates and oceans. In E. Barrera & C. C. Johnson (Eds.), Evolution of the Cretaceous ocean-climate system (pp. 245–282). Boulder: Geological Society of America Special Paper.

    Chapter  Google Scholar 

  • Brasier, M.D. (1995). Fossil indicators of nutrient levels. 1: Eutrophication and climate change. In: D.W Bosence, & P.A. Allison (Eds.), Marine palaeoenvironmental analysis from fossils (vol. 83, pp. 113–132). London: Geological Society of London Special Publication.

  • Brenchley, P. J., & Harper, D. A. T. (1998). Palaeoecology: ecosystems, environments and evolution (p. 402). London: Chapman & Hall.

    Google Scholar 

  • Broecker, W. S., & Takahashi, T. (1981). Hydrography of the central Atlantic-IV: intermediate waters of Antarctic origin. Deep Sea Research, 28(3), 177–193.

    Article  Google Scholar 

  • Carlson, C. A. (2002). Production and removal processes. In D. Hansell & C. A. Carlson (Eds.), Biogeochemistry of marine dissolved organic matter (pp. 91–151). London: Academic Press.

    Chapter  Google Scholar 

  • Dhondt, A. V. (1982). Bivalvia (Mollusca) from the Maastrichtian of Hemmoor (NW Germany) and their palaeobiogeographical affinities. Geologisches Jahrbuch, A, 61, 73–107.

    Google Scholar 

  • Ehrmann, W. U. (1986). Zum Sedimenteintrag in das zentrale nordwesteuropäische Oberkreidemeer. Geologisches Jahrbuch, A, 97, 3–139.

    Google Scholar 

  • Emery, W. J. (2003). Water types and water masses. In J. R. Holton, J. A. Curry, & J. A. Pyle (Eds.), Encyclopedia of atmospheric sciences (pp. 1556–1567). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Engelke, J., Linnert, C., Mutterlose, J., & Wilmsen, M. (2016). The benthic macrofauna from the Lower Maastrichtian chalk of Kronsmoor (northern Germany, Saturn quarry): taxonomic outline and palaeoecologic implication. Acta Geologica Polonica, 66(4), 671–694.

    Article  Google Scholar 

  • Ernst, H. (1978). Zur Bathymetrie und Sedimentstrukturen der Schreibkreide von Lägerdorf/Holstein (Coniac–Santon): eine quantitative Analyse der Foraminiferenfaunen. Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 48, 53–78.

    Google Scholar 

  • Ernst, H. (1984). Bericht über eine Großprobenserie im Schreibkreide-Richtprofil von Lägerdorf/Kronsmoor (M-Coniac bis U-Maastricht). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 57, 137–145.

    Google Scholar 

  • Ernst, G., & Schulz, M.-G. (1974). Stratigraphie und Fauna des Coniac und Santon im Schreibkreide-Richtprofil von Lägerdorf (Holstein). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 43, 5–60.

    Google Scholar 

  • Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O., & Taylor, F. J. R. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–360.

    Article  Google Scholar 

  • Felder, P. J. (1981). Mesofossielen in de kalkafzettingen uit het krijt van limburg. Natuurhistorisch Maandblad, 70(12), 201–236.

    Google Scholar 

  • Felder, P. J. (2001). Bioklasten-stratigrafie of ecozonatie voor het Krijt (Santoniaan-Campaniaan-Maastrichtiaan) van Zuid-Limburg en oostelijk België. Memoirs of the Geological Survey of Belgium, 47, 1–141.

    Google Scholar 

  • Ferguson, J. C. (1982). A comparative study of the net metabolic benefits derived from the uptake and release of free amino acids by marine invertebrates. Biological Bulletin, 162(1), 1–17.

    Article  Google Scholar 

  • Flügel, E. (2004). Microfacies of carbonate rocks (p. 976). Berlin/Heidelberg: Springer Verlag.

    Book  Google Scholar 

  • Franke, A. (1922). Die Präparation von Foraminiferen und anderen mikroskopischen Tierresten. In K. Keilhacker (Ed.), Lehrbuch der praktischen Geologie, Mineralogie, und Palaeontologie (pp. 509–533). Stuttgart: Enke-Verlag.

    Google Scholar 

  • Friedrich, O., Herrle, J. O., & Hemleben, C. (2005a). Climatic changes in the Late Campanian–Early Maastrichtian: micropaleontological and stable isotopic evidence from an epicontinental sea. Journal of Foraminiferal Research, 35(3), 228–247.

    Article  Google Scholar 

  • Friedrich, O., Herrle, J. O., Kößler, P., & Hemleben, C. (2005b). Early Maastrichtian stable isotopes: deep-water sources in the North Atlantic? Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 171–184.

    Article  Google Scholar 

  • Fürsich, F. T. (1994). Palaeoecology and evolution of Mesozoic salinity-controlled benthic macroinvertebrate associations. Lethaia, 26, 327–346.

    Article  Google Scholar 

  • Giorgioni, M., Weissert, H., Bernasconi, S. M., Hochuli, P. A., Keller, C. E., Coccioni, R., Petrizzo, M. R., Lukeneder, A., & Garcia, T. I. (2015). Paleoceanographic changes during the Albian–Cenomanian in the Tethys and North Atlantic and the onset of the Cretaceous chalk. Global and Planetary Change, 126, 46–61.

    Article  Google Scholar 

  • Goldring, R. (1995). Organism and the substrate: response and effect. In D. W. Bosence & P. A. Allison (Eds.), Marine palaeoenviromental analysis from fossils (pp. 151–180). London: Geological Society Special Publications No. 83.

    Google Scholar 

  • Graf, G. (1989). Benthic-pelagic coupling in a deep-sea benthic community. Nature, 341, 437–439.

    Article  Google Scholar 

  • Graf, G. (1992). Benthic-pelagic coupling: a benthic view. Oceanograpy and Marine Biology, 30, 149–190.

    Google Scholar 

  • Gravesen, P., & Jakobsen, S. L. (2013). Skrivekridtets fossiler (p. 168). København: Gyldendal.

    Google Scholar 

  • Hammer, Ø., & Harper, D. A. T. (2006). Paleontological data analysis (p. 351). Cambridge: Black Well.

    Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologica Electronica, 4(1), 1–9.

    Google Scholar 

  • Hancock, J. M. (1989). Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association, 100, 565–594.

    Article  Google Scholar 

  • Hancock, J. M., & Kauffman, E. G. (1979). The great transgressions of the Late Cretaceous. Journal of the Geological Society London, 136, 175–186.

    Article  Google Scholar 

  • Hansell, D. A., Carlson, C. A., & Schlitzer, R. (2012). Net removal of major marine dissolved organic carbon fractions in the subsurface ocean. Global Biogeochemical Cycles, 26(GB1016), 1–9.

    Google Scholar 

  • Hansen, T., & Surlyk, F. (2014). Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 399, 323–344.

    Article  Google Scholar 

  • Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Change, 113, 44–58.

    Article  Google Scholar 

  • Hay, W. W. (1995). Cretaceous paleoceanography. Geologica Carpathica, 46(5), 257–266.

    Google Scholar 

  • Hay, W. W. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29, 725–753.

    Article  Google Scholar 

  • Hay, W. W., & Floegel, S. (2012). New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115, 262–272.

    Article  Google Scholar 

  • Höflinger, J. (2015). Kreidebrachiopoden. Bestimmungstipps für Sammler (p. 352). Röthenbach: Selbstverlag.

    Google Scholar 

  • Ineson, J. R., Stemmerik, L., & Surlyk, F. (2005). Chalk. In R. C. Selley, L. R. M. Cooks, & I. R. Plimer (Eds.), Encyclopedia of geology (pp. 42–50). Oxford: Elsevier Science.

    Chapter  Google Scholar 

  • Izumi, K. (2015). Deposit feeding by the Pliocene deep-sea macrobenthos, synchronized with phytodetritus input: micropaleontological and geochemical evidence recorded in the trace fossil Phymatoderma. Palaeogeography, Palaeoclimatology, Palaeoecology, 431, 15–25.

    Article  Google Scholar 

  • Jäger, M. (1983). Serpulidae (Polychaeta sedentaria) aus der norddeutschen höheren Oberkreide – Systematik, Stratigraphie, Ökologie. Geologisches Jahrbuch, A, 68, 3–219.

    Google Scholar 

  • Jäger, M. (2004). Serpulidae und Spirorbidae (Polychaeta sedentaria) aus Campan und Maastricht von Norddeutschland, den Niederlanden, Belgien und angrenzenden Gebieten. Geologisches Jahrbuch, A, 157, 121–249.

    Google Scholar 

  • Jäger, M. (2012). Sabellids and serpulids (Polychaeta sedentaria) from the type Maastrichtian, the Netherlands and Belgium. In J. W. M. Jagt, S. K. Donovan, & E. A. Jagt-Yazykova (Eds.), Fossils of the type Maastrichtian (part 1) (pp. 45–81). Leiden: Scripta Geologica Special Issue 8.

    Google Scholar 

  • Jagt, J. W. M. (1999). Late Cretaceous–Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 2 crinoids. Scripta Geologica, 116, 59–255.

    Google Scholar 

  • Jagt, J. W. M. (2000). Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 5 asteroids. Scripta Geologica, 121, 377–503.

    Google Scholar 

  • Johansen, M. B., & Surlyk, F. (1990). Brachiopods and the stratigraphy of the Upper Campanian and Lower Maastrichtian Chalk of Norfolk, England. Palaeontology, 33(4), 823–872.

    Google Scholar 

  • Johnson, C., & Wendt, D. E. (2007). Availability of dissolved organic matter offsets metabolic costs of a protracted larval period for Bugula neritina (Bryozoa). Marine Biology, 151(1), 301–311.

    Article  Google Scholar 

  • Kidwell, S. M. (2002). Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live-dead studies. Geobios, 35(1), 107–119.

    Article  Google Scholar 

  • Kotake, N. (2014). Changes in lifestyle and habitat of Zoophycos-producing animals related to evolution of phytoplankton during the Late Mesozoic: geological evidence for the ‘benthic-pelagic coupling model’. Lethaia, 47, 165–175.

    Article  Google Scholar 

  • Kowalewski, M., Carroll, M., & Rodland, D. L. (2002). Abundant brachiopods on a tropical, upwelling-influenced shelf (southeast Brazilian Bight, South Atlantic). PALAIOS, 17, 277–286.

    Article  Google Scholar 

  • Kutscher, M. (1984). Die Scaphopoden und Gastropoden der Rügener Schreibkreide (Oberes Unter-Maastricht). Freiberger Forschungsheft (Geowissenschaften Paläontologie) - Beiträge zur allgemeinen und speziellen Paläontologie, C395, 55–69.

    Google Scholar 

  • Kutscher, M., & Jagt, J. W. M. (2000). Early Maastrichtian ophiuroids from Rügen (northeast Germany) and Møn (Denmark). In J. W. M. Jagt (ed.), Late Cretaceous-Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium—part 3: Ophiuroids. Scripta Geologica, 121, 45–107.

  • Lauridsen, B. W., & Surlyk, F. (2008). Benthic faunal response to late Maastrichtian chalk-marl cyclicity at Rørdal, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 269(1–2), 38–53.

    Article  Google Scholar 

  • Lauridsen, B. W., Gale, A. S., & Surlyk, F. (2009). Benthic macrofauna variations and community structure in Cenomanian cyclic chalk-marl from Southerham Grey Pit, SE England. Journal of the Geological Society London, 166, 115–127.

    Article  Google Scholar 

  • Liebau, A. (1984). Grundlagen der Ökobathymetrie. In H. P. Luterbacher (Ed.), Paläobathymetrie, Paläontologische Kursbücher, Band 2 (pp. 149–184). München: Paläontologische Gesellschaft.

    Google Scholar 

  • Linnert, C., Robinson, S. A., Lees, J. A., Brwon, P. R., Pérez-Rodríguez, I., Petrizzo, M. R., Falzoni, F., Littler, K., Arz, J. A., & Russell, E. E. (2014). Evidence for global cooling in the Late Cretaceous. Nature Communications, 5, 1–7.

    Article  Google Scholar 

  • Linnert, C., Engelke, J., Wilmsen, M., & Mutterlose, J. (2016). The impact of the Maastrichtian cooling on the marine nutrient regime—evidence from midlatitudinal calcareous nannofossils. Paleoceanography, 31, 694–714.

    Article  Google Scholar 

  • Martin, R. E. (1999). Taphonomy—a process approach (p. 508). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Maystrenko, Y., Bayer, U., & Scheck-Wenderoth, M. (2005a). The Glueckstadt Graben, a sedimentary record between the North and Baltic Sea in north Central Europe. Tectonophysics, 397, 113–126.

    Article  Google Scholar 

  • Maystrenko, Y., Bayer, U., & Scheck-Wenderoth, M. (2005b). Structure and evolution of the Glueckstadt Graben due to salt movements. International Journal of Earth Sciences, 94, 799–814.

    Article  Google Scholar 

  • McCammon, H. M. (1969). The food of articulate brachiopods. Journal of Paleontology, 43, 976–985.

    Google Scholar 

  • McCammon, H. M., & Reynolds, W. A. (1976). Experimental evidence for direct nutrient assimilation by the lophophore of articulate brachiopods. Marine Biology, 34, 41–51.

    Article  Google Scholar 

  • Miller, K. G., Barrera, E., Olsson, R. K., Sugarman, P. J., & Savin, S. M. (1999). Does ice drive early Maastrichtian eustasy? Geology, 27, 783–786.

    Article  Google Scholar 

  • Millero, F. J. (2013). Chemical oceanography (p. 591). Boca Raton: CRC Press.

    Google Scholar 

  • Milliman, J. D. (1993). Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state. Global Biogeochemical Cycles, 7, 927–957.

    Article  Google Scholar 

  • Mutterlose, J., Bornemann, A., & Herrle, J. O. (2005). Mesozoic calcareous nannofossils—state of the art. Paläontologische Zeitschrift, 79, 113–133.

    Article  Google Scholar 

  • Nestler, H. (1965). Die Rekonstruktion des Lebensraumes der Rügener Schreibkreide-Fauna (Unter-Maastricht) mit Hilfe der Paläoökologie und Paläobiologie. Geologie 14, Beiheft 49, 1–147.

  • Nestler, H. (1982). Die Fossilien der Rügener Schreibkreide (p. 108). Wittenberg: Die Neue Brehm-Bücherei.

    Google Scholar 

  • Niebuhr, B. (1995). Fazies-Differenzierungen und ihre Steuerungsfaktoren in der höheren Oberkreide von S-Niedersachsen/Sachsen-Anhalt (N-Deutschland). Berliner geowissenschaftliche Abhandlungen, A174, 1–131.

    Google Scholar 

  • Niebuhr, B. (2006). Multistratigraphische Gliederung der norddeutschen Schreibkreide (Coniac bis Maastricht), Korrelation von Aufschlüssen und Bohrungen. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 157, 245–262.

    Article  Google Scholar 

  • Niebuhr, B., Hiss, M., Kaplan, U., Tröger, K.-A., Voigt, S., Voigt, T., Wiese, F., & Wilmsen, M. (2007). Lithostratigraphie der norddeutschen Oberkreide. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 55, 1–136.

    Google Scholar 

  • Ogg, J. G., & Hinnov, L. A. (2012). Cretaceous. In F. M. Gradstein, J. G. Ogg, M. Schmitz, & G. M. Ogg (Eds.), The geologic time scale 2012 (pp. 793–853). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Oschmann, W. (1991). Anaerobic–poikiloaerobic–aerobic: a new facies zonation for modern and ancient neritic redox facies. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 565–571). Berlin: Springer.

    Google Scholar 

  • Rasmussen, H. W. (1961). A monograph on the Cretaceous Crinoidea (p. 428). København: Biologiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab.

    Google Scholar 

  • Rasmussen, S. L., & Surlyk, F. (2012). Facies and ichnology of an Upper Cretaceous chalk contourite drift complex, eastern Denmark, and the validity of contourite facies models. Journal of the Geological Society of London, 169, 435–447.

    Article  Google Scholar 

  • Reich, M., & Frenzel, P. (2002). Die Fauna und Flora der Rügener Schreibkreide (Maastrichtium, Ostsee). Archiv für Geschiebekunde, 3, 73–284.

    Google Scholar 

  • Reich, M., Villier, L., & Kutscher, M. (2004). The echinoderms of the Rügen White Chalk (Maastrichtian, Germany). In T. Heinzeller & J. H. Nebelsick (Eds.), Echinoderms: München (pp. 495–505). Leiden: Balkema Publishers.

    Chapter  Google Scholar 

  • Rudwick, M. J. S. (1970). Living and fossil brachiopods (p. 199). London: Hutchinson University Library.

    Google Scholar 

  • Russell, J.L., & Dickinson, A.G. (2003). Variability in oxygen and nutrients in South Pacific Antarctic Intermediate Water. Global Biogeochemical Cycles, 17(2), 2–1–2-11.

  • Sarmiento, J. L., Gruber, N., Brzezinski, M. A., & Dunne, J. P. (2004). High-latitude controls of thermocline nutrients and low-latitude biological productivity. Nature, 427, 56–60.

    Article  Google Scholar 

  • Schäfer, W. (1962). Aktuo-Paläontologie nach Studien in der Nordsee (p. 666). Frankfurt am Main: Waldemar Kramer.

    Google Scholar 

  • Schmid, F. (Ed.). (2005). Fossilien aus der Schreibkreide von Hemmoor und Kronsmoor (mit Bibliographie) - Belemniten, Einzelkorallen, Serpuliden und Skelettreste eines Elasmosauriers. Geologisches Jahrbuch, A157, 1–249.

  • Schönfeld, J., Schulz, M. G., Burnett, J., Gale, A. S., Hambach, U., Hansen, O. P., Kennedy, W. J., Rasmussen, H. W., Thirlwall, M. F., & Wray, D. S. (1996). New results on biostratigraphy, paleomagnetism, geochemistry and correlation from the standard section for the Upper Creteceous white chalk of northern Germany (Lägerdorf-Kronsmoor-Hemmoor). Mitteilungen aus dem Geologischen-Paläontologischen Institut der Universität Hamburg, 77, 545–575.

    Google Scholar 

  • Schulz, M.-G., Ernst, G., Ernst, H., & Schmid, F. (1984). Coniacian to Maastrichtian stage boundaries in the standard section for the Upper Cretaceous white chalk of NW Germany (Lägerdorf-Kronsmoor-Hemmoor): definitions and proposals. Bulletin of the Geological Society Denmark, 33, 203–215.

    Google Scholar 

  • Schwarz, A., & Marten, H. (1927). Das Herauspräparieren von Fossilien aus festen Gesteinen mit Hilfe gefrierenden Wassers. Zugleich ein weiterer Beitrag zur Präparation verkiester Fossilien. Senckenbergiana, 9(6), 243–247.

    Google Scholar 

  • Seilacher, A. (1967). Bathymetry of trace fossils. Marine Geology, 5, 413–428.

    Article  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication (p. 144). Urbana: University of Illinois Press.

    Google Scholar 

  • Simon, E. (2000). Upper Campanian brachiopods from the Mons Basin (Hainaut, Belgium): the brachiopod assemblage from the Belemnitella mucronata Zone. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Sciences de la Terre, 70, 129–160.

    Google Scholar 

  • Smith, A.B., & Batten, D.J. (Eds.) (2002). Fossils of the Chalk (2 nd Ed.). Palaeontological Association Field Guides to Fossils (p. 374). London: Palaeontological Association.

  • Sommer, U. (2005). Biologische Meereskunde (p. 412). Berlin/Heidelberg/New York: Springer.

    Google Scholar 

  • Stanley, S. M., Ries, J. B., & Hardie, L. A. (2005). Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. Geology, 33, 593–596.

    Article  Google Scholar 

  • Suga, T., & Talley, L. D. (1995). Antarctic intermediate water circulation in the tropical and subtropical South Atlantic. Journal of Geophysical Research, 100(C7), 13,441–13,453.

    Article  Google Scholar 

  • Surlyk, F. (1982). Brachiopods from the Campanian–Maastrichtian boundary sequence, Kronsmoor (NW Germany) - Die Maastricht-Stufe in NW-Deutschland. Geologisches Jahrbuch, A, 61, 259–277.

    Google Scholar 

  • Surlyk, F., & Birkelund, T. (1977). An integrated stratigraphical study of fossil assemblages from the Maastrichtian White Chalk of northwestern Europe. In E. G. Kauffman & J. Hazel (Eds.), Concepts and methods of biostratigraphy (pp. 257–281). Pennsylvania: Dowden, Hutchinson & Ross, Inc..

    Google Scholar 

  • Surlyk, F., & Lykke-Andersen, H. (2007). Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin. Sedimentology, 54, 405–422.

    Article  Google Scholar 

  • Tardent, P. (2005). Meeresbiologie - eine Einführung (p. 305). Stuttgart: George Thieme Verlag.

    Google Scholar 

  • Taylor, P.D. (2002). Bryozoans. In: A.B. Smith, D.J. Batten (Eds.), Fossils of the Chalk (2 nd Ed.). Palaeontological Association Field Guides to Fossils no. 2 (pp. 53–75). London: The Palaeontological Association.

  • Taylor, P. D. (2005). Bryozoans and palaeoenvironmental interpretation. Journal of Palaeontological Society of India, 50(2), 1–11.

    Google Scholar 

  • Thibault, N., Harlou, R., Schovsbo, N. H., Stemmerik, L., & Surlyk, F. (2016). Late Cretaceous (late Campanian-Maastrichtian) sea-surface temperature record of the Boreal Chalk Sea. Climate of the Past, 12, 1–10.

    Article  Google Scholar 

  • Tomašových, A., Kidwell, S. M., Foygel, R., & Kaufman, D. (2014). Long-term accumulation of carbonate shells reflects a 100-fold drop in loss rate. Geology, 42, 819–822.

    Article  Google Scholar 

  • Turner, J. T. (2002). Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquatic Microbial Ecology, 27, 57–102.

    Article  Google Scholar 

  • Vejbæk, O. V., Andersen, C., Dusar, M., Herngreen, G. F. W., Krabbe, H., Leszczyński, K., Lott, G. K., Mutterlose, J., & Van der Molen, A. S. (2010). Cretaceous. In J. C. Doornenbal & A. G. Stevenson (Eds.), Petroleum geological atlas of the southern Permian basin area (pp. 195–209). Houten: EAGE Publications b.v..

    Google Scholar 

  • Voigt, E. (1996). Submarine Aragonit-Lösung am Boden des Schreibkreide-Meeres. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 77, 577–601.

    Google Scholar 

  • Voigt, S., & Schönfeld, J. (2010). Cyclostratigraphy of the reference section for the Cretaceous white chalk of northern Germany, Lägerdorf-Kronsmoor: a late Campanian–early Maastrichtian orbital time scale. Palaeogeography, Palaeoclimatology, Palaeoecology, 287(1–4), 67–80.

    Article  Google Scholar 

  • Voigt, S., Gale, A. S., Jung, C., & Jenkyns, H. C. (2012). Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: development of a new Maastrichtian timescale. Newsletter on Stratigraphy, 45(1), 25–53.

    Article  Google Scholar 

  • Wendt, D. E., & Johnson, C. (2006). Using latent effects to determine the ecological importance of dissolved organic matter to marine invertebrates. Integrative and Comparative Biology, 46(5), 634–642.

    Article  Google Scholar 

  • Wick, W. (1947). Aufbereitungsmethoden in der Mikropaläontologie; Festschrift zur 150-Jahr-Feier der Gründung der Gesellschaft. Jahresberichte der naturhistorischen Gesellschaft Hannover, 94(98), 35–41.

    Google Scholar 

  • Wilmsen, M. (2003). Sequence stratigraphy and palaeoceanography of the Cenomanian Stage in northern Germany. Cretaceous Research, 24, 525–568.

    Article  Google Scholar 

  • Wilmsen, M., & Niebuhr, B. (2017). High-resolution Campanian–Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenvironmental implications for the Boreal shelf sea. Acta Geologica Polonica, 67(1), 47–74. doi:10.1515/agp-2017-0004.

  • Wissing, F.-N., & Herrig, E. (1999). Arbeitstechniken der Mikropaläontologie. Eine Einführung (p. 191). Stuttgart: Ferdinand Enke Verlag.

    Google Scholar 

  • Ziegler, P. A. (1990). Geological atlas of western and central Europe, 2 (completely revised) (p. 239). Amsterdam: Shell Internationale Petroleum Maatschappij B.V..

    Google Scholar 

Download references

Acknowledgements

Holcim (Deutschland) AG, in particular Mr. J. Stinsky and Dr. A. Iwanoff, are thanked for permission to carry fieldwork at the Saturn quarry. We also thank Dr. B. Niebuhr (Dresden) for support in fieldwork, M. Müller (Bochum) for sampling as well as F. Häuser and K. Kleefuß (both Bochum) for preparation. M. Berensmeier (Potsdam) picked some samples. M. Machalski (Warsaw) and F.T. Fürsich (Erlangen) are thanked for constructive reviews of the manuscript as well as P. Königshof (Frankfurt) for editorial handling. Financial support by the German Research Foundation (DFG codes MU 667/44-1 and WI 1743/8-1) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Engelke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelke, J., Linnert, C., Mutterlose, J. et al. Early Maastrichtian benthos of the chalk at Kronsmoor, northern Germany: implications for Late Cretaceous environmental change. Palaeobio Palaeoenv 97, 703–722 (2017). https://doi.org/10.1007/s12549-017-0283-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-017-0283-2

Keywords

Navigation