Skip to main content
Log in

Upper Pliocene heterozoan assemblage from the Guitar Formation of Car Nicobar Island, India: palaeoecological implications and taphonomic signatures

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The upper Pliocene Guitar Formation outcrops in Car Nicobar Island, a near-pristine locality of the Andaman-Nicobar Group of Islands, India. Tropical-subtropical photozoan and cool-water heterozoan assemblages have been broadly studied up to now, but little is known about the tropical heterozoans that require deeper analysis. The major objectives of the current assessment pertaining to the Guitar Formation are evaluation of biotic diversity, palaeoecological processes governing the depositional environment and general taphonomic signatures. The carbonate sediments rich in algal and benthic foraminiferal assemblages are dominated by lithophylloids and nummulitids, respectively. Secondary biotic constituents are corals, barnacles, bryozoans, echinoderms, molluscs and gastropods. In particular, a reefal environment is indicated after a thorough examination of the heterozoan assemblages including relative abundance of the algal-foraminiferal taxa. The results indicate that carbonate sedimentation occurred in warm, tropical waters under meso-oligotrophic conditions and shallow to mildly deeper bathymetric levels ranging close to or below the fair-weather wave base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 4
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams, C. G. (1965). The foraminifera and stratigraphy of the Melinau Limestone, Sarawak, and its importance in Tertiary correlation. Quarterly Journal of the Geological Society of London, 121, 283–338.

    Article  Google Scholar 

  • Adams, C. G., Lee, D. E., & Rosen, B. R. (1990). Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeography Palaeoclimatology Palaeoecology, 77, 289–313.

    Article  Google Scholar 

  • Adey, W. H., & MacIntyre, I. G. (1973). Crustose coralline algae: a re-evaluation in the geological sciences. Geological Society of America Bulletin, 84, 883–904.

    Article  Google Scholar 

  • Adey, W. H., Townsend, R. A., & Boykins, W. T. (1982). The crustose coralline algae (Rhodophyta; Corallinaceae) of the Hawaiian Islands. Smithsonian Contributions to the Marine Sciences, 15, 1–74.

    Article  Google Scholar 

  • Aguirre, J., & Braga, J. C. (1998). Redescription of Lemoine’s (1939) types of coralline algal species from Algeria. Palaeontology, 41, 489–507.

    Google Scholar 

  • Aguirre, J., Riding, R., & Braga, J. C. (2000). Diversity of coralline red algae: origination and extinction patterns from the Early Cretaceous to the Pleistocene. Paleobiology, 26, 651–667.

    Article  Google Scholar 

  • Aguirre, J., Braga, J. C., Martín, J. M., & Betzler, C. (2012). Palaeoenvironmental and stratigraphic significance of Pliocene rhodolith beds and coralline algal bioconstructions from the Carboneras Basin (SE Spain). Geodiversitas, 34, 115–136.

    Article  Google Scholar 

  • Aguirre, J., Belaústegui, Z., Domènech, R., de Gibert, J. M., & Martinell, J. (2014). Snapshot of a lower Pliocene Dendropoma reef from Sant Onofre (Baix Ebre, Tarragona, NE Spain). Palaeogeography Palaeoclimatology Palaeoecology, 395, 9–20.

    Article  Google Scholar 

  • Badve, R. M., & Kundal, P. (1998). Dasycladacean algae from Palaeocene to Oligocene rocks of Baratang Island, Andaman, India. Journal of the Geological Society of India, 51, 485–492.

    Google Scholar 

  • Bassi, D., & Nebelsick, J. H. (2000). Calcareous algae from the Lower Oligocene Gornji Grad Beds of Northern Slovenia. Rivista Italiana di Paleontologia Stratigrafia, 106, 99–122.

    Google Scholar 

  • Bassi, D., & Nebelsick, J. H. (2010). Components, facies and ramps: Redefining Upper Oligocene shallow water carbonates using coralline red algae and larger foraminifera (Venetian area, northeast Italy). Palaeogeography Palaeoclimatology Palaeoecology, 295, 258–280.

    Article  Google Scholar 

  • Bassi, D., Hottinger, L., & Nebelsick, J. (2007). Larger foraminifera from the Upper Oligocene of the Venetian area, North-East Italy. Paleontology, 50, 845–868.

    Article  Google Scholar 

  • Basso, D. (1998). Deep rhodolith distribution in the Pontian Islands, Italy: a model for the paleoecology of a temperate sea. Palaeogeography Palaeoclimatology Palaeoecology, 137, 176–187.

    Article  Google Scholar 

  • Basso, D., Vrsaljko, D., & Grgasović, T. (2008). The coralline flora of a Miocene maërl: the Croatian “Litavac”. Geologia Croatica, 61, 333–340.

    Google Scholar 

  • Basso, D., Nalin, R., & Nelson, C. S. (2009). Shallow-water Sporolithon rhodoliths from North Island (New Zealand). Palaios, 24, 92–103.

    Article  Google Scholar 

  • Beavington-Penney, S. J., & Racey, A. (2004). Ecology of extant nummulitids and other larger benthic foraminifera: applications in palaeoenvironmental analysis. Earth-Science Reviews, 67, 219–265.

    Article  Google Scholar 

  • Berning, B., Reuter, M., Piller, W. E., Harzhauser, M., & Kroh, A. (2009). Larger foraminifera as a substratum for encrusting bryozoans (Late Oligocene, Tethyan Seaway, Iran). Facies, 55, 227–241.

    Article  Google Scholar 

  • Betzler, C., Brachert, T. C., & Nebelsick, J. (1997). The warm temperate carbonate province. A review of the facies, zonations, and delimitations. Courier Forschungsinstitut Senckenberg, 201, 83–99.

    Google Scholar 

  • Bosence, D. W. J. (1983). Coralline algae from the Miocene of Malta. Palaeontology, 26, 147–173.

    Google Scholar 

  • Bouillon, J., Medel, M. D., Pagès, F., Gili, J. M., Boero, F., & Gravili, C. (2004). Fauna of the Mediterranean Hydrozoa. Scientia Marina, 68, 5–438.

    Article  Google Scholar 

  • Brachert, T. C., Hultzsch, N., Knoerich, A. C., Krautworst, U. M. R., & Stückrad, O. M. (2001). Climatic signatures in shallow-water carbonates: high-resolution stratigraphic markers in structurally controlled carbonate buildups (Late Miocene, southern Spain). Palaeogeography Palaeoclimatology Palaeoecology, 175, 239–248.

    Article  Google Scholar 

  • Braga, J. C., & Aguirre, J. (1995). Taxonomy of fossil coralline algal species: Neogene Lithophylloideae (Rhodophyta, Corallinaceae) from southern Spain. Review of Palaeobotany and Palynology, 86, 265–285.

    Article  Google Scholar 

  • Braga, J. C., & Aguirre, J. (2001). Coralline algal assemblages in upper Neogene reef and temperate carbonates in southern Spain. Palaeogeography Palaeoclimatology Palaeoecology, 175, 27–41.

    Article  Google Scholar 

  • Braga, J. C., & Aguirre, J. (2004). Coralline algae indicate Pleistocene evolution from deep, open platform to outer barrier reef environments in the northern Great Barrier Reef margin. Coral Reefs, 23, 547–558.

    Google Scholar 

  • Braga, J. C., & Martín, J. M. (1988). Neogene coralline-algal growth-forms and palaeoenvrionments in the Almanzora River Valley (Almeria, S-E Spain). Palaeogeography Palaeoclimatology Palaeoecology, 67, 285–303.

    Article  Google Scholar 

  • Braga, J. C., Bosence, D. W., & Steneck, R. S. (1993). New anatomical characters in fossil coralline algae and their taxonomic implications. Palaeontology, 36, 535–547.

    Google Scholar 

  • Braga, J.C., Martin, J.M., Betzler, C., & Aguirre, J. (2006). Models of temperate carbonate deposition in Neogene basins in SE Spain: a synthesis. In: Pedley, H.M., & Carannante, G. (eds.) Cool-water carbonates: depositional systems and palaeoenvironmental controls. Geological Society London, Special Publications, 255, 121–135.

  • Braga, J. C., Bassi, D., & Piller, W. (2010). Palaeoenvironmental significance of Oligocene-Miocene coralline red algae – a review. International Association of Sedimentologists Special Publication, 42, 165–182.

    Google Scholar 

  • Brandano, M., & Corda, L. (2002). Nutrients, sea level and tectonics: constrains for the facies architecture of a Miocene carbonate ramp in central Italy. Terra Nova, 14, 257–262.

    Article  Google Scholar 

  • Brandano, M., Frezza, V., Tomassetti, L., & Cuffaro, M. (2009). Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeography Palaeoclimatology Palaeoecology, 274, 54–63.

    Article  Google Scholar 

  • Bressan, G., & Babbini, L. (2003). Corallinales del Mar Mediterraneo: guida alla determinazione. Biologia Marina Mediterranea, 10, 1–237.

    Google Scholar 

  • Bressan, G., & Nichetto, P. (1994). Some observations on distribution gradients of the maerl in the Northern Adriatic Sea. Acta Adriatica, 35, 15–20.

    Google Scholar 

  • Brett, C. E., & Baird, G. C. (1986). Comparative taphonomy: a key for paleoenvironmental reconstruction. Palaios, 1, 207–227.

    Article  Google Scholar 

  • Chandra, A., & Saxena, R. K. (1998). Lithostratigraphy of the Car Nicobar Island, Andaman and Nicobar Islands, India. Geophytology, 26, 33–38.

    Google Scholar 

  • Chandra, A., Saxena, R. K., & Ghosh, A. K. (1999). Coralline algae from the Kakana Formation (Middle Pliocene) of Car Nicobar Island, India and their implication in biostratigraphy, palaeoenvironment and palaeobathymetry. Current Science, 76, 1498–1502.

    Google Scholar 

  • Checconi, A., Bassi, D., Passeri, L., & Rettori, R. (2007). Coralline red algal assemblage from the Middle Pliocene shallow-water temperate carbonates of the Monte Cetona (Northern Apennines, Italy). Facies, 53, 57–66.

    Article  Google Scholar 

  • Doyle, L. J. (1986). Carbonate comparison of West Florida continental margin with margins of Eastern United States. AAPG Bulletin, 70, 583.

    Google Scholar 

  • Eremenko, N. A., & Sastri. (1977). On the Petroleum Geology of Andaman Islands. Bulletin of Oil and Natural Gas Commission, 14, 35–47.

    Google Scholar 

  • Erlich, R.N., Longo, A.P., & Hyare, S. (1993). Response of carbonate platform margins to drowning: evidence of environmental collapse. In: Loucks, R.G., & Sarg, J.F. (eds.) Carbonate Sequence Stratigraphy. American Association of Petroleum Geologists Memoirs, 57, 241–266.

  • Flügel, E. (2004). Facies of carbonate rocks, analysis, interpretation and application. Berlin: Springer.

    Google Scholar 

  • Gee, E. R. (1927). The geology of the Andaman and Nicobar Islands with special reference to Middle Andaman. Records of the Geological Survey of India, 59, 208–232.

    Google Scholar 

  • Ghosh, A. K., & Sarkar, S. (2013). Facies analysis and paleo-environmental interpretation of Piacenzian carbonate deposits from the Guitar Formation of Car Nicobar Island, India. Geoscience Frontiers, 4, 755–764.

  • Ghosh, A.K., Chandra, A., & Saxena, R.K. (2004). Middle Pliocene non-geniculate and geniculate coralline algae from the Car Nicobar Island, India. In: Srivastava, P.C. (ed.) Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. Prof. D.D. Pant Memorial Volume, pp. 249–262.

  • Gorsline, D.S. (1963). Environments of carbonate deposition, Florida Bay and the Florida Straits. In: Bass, R.O. (ed.). Shelf carbonates of the Paradox basin. Four Corners Geological Society Symposium, 4th Field Conference, pp. 130–143.

  • Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Holguin, J. E., & Borges, J. M. (2004). Nutrient and temperature controls on modern carbonate production: An example from the Gulf of California, Mexico. Geology, 32, 213–216.

    Article  Google Scholar 

  • Halfar, J., Godinez-Orta, L., Mutti, M., Valdez-Hoguin, J. E., & Borges, J. M. (2006). Carbonates calibrated against oceanographic parameters along a latitudinal transect in the Gulf of California, Mexico. Sedimentology, 53, 297–320.

    Article  Google Scholar 

  • Hallock, P., & Glenn, E. C. (1986). Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios, 1, 55–64.

    Article  Google Scholar 

  • Hallock, P., & Schlager, W. (1986). Nutrient excess and the demise of coral reefsand carbonate platforms. Palaios, 1, 389–398.

    Article  Google Scholar 

  • Hallock, P., Hine, A. C., Vargo, G. A., Elrod, J. A., & Jaap, W. C. (1988). Platforms of the Nicaraguan rise: examples of the sensitivity of carbonate sedimentation to excess trophic resources. Geology, 16, 1104–1107.

    Article  Google Scholar 

  • Harvey, A. S., Broadwater, S. T., Woelkerling, W. J., & Mitrovski, P. J. (2003). Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. Journal of Phycology, 39, 988–998.

    Article  Google Scholar 

  • Hetzinger, S., Halfar, J., Riegl, B., & Godinez-Orta, L. (2006). Sedimentology and acoustic mapping of modern rhodolith facies on a non-tropical carbonate shelf (Gulf of California, Mexico). Journal of Sedimentary Research, 76, 670–682.

    Article  Google Scholar 

  • Hine, A., Hallock, P., Harris, M. W., Mullins, H. T., Belknap, D. F., & Jaap, W. C. (1987). Halimeda bioherms along an open seaway: Miskito Channel, Nicaraguan Rise, SW Caribbean Sea. Coral Reefs, 6, 173–178.

    Article  Google Scholar 

  • Hohenegger, J. (1999). Larger foraminifera-microscopical greenhouses indicating shallow-water tropical and subtropical environments in the present and past. Kagoshima University Research Center for the Pacific Islands, Occasional Papers, 32, 19–45.

    Google Scholar 

  • Hohenegger, J. (2004). Depth coenoclines and environmental considerations of western Pacific larger foraminifera. Journal of Foraminiferal Research, 34, 9–33.

    Article  Google Scholar 

  • Hohenegger, J. (2005). Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeography Palaeo-climatology Palaeoecology, 217, 115–130.

  • Hopley, D. (1984). The Holocene ‘high energy window’ on the central Great Barrier Reef. In B. G. Thom (Ed.), Coastal Geomorphology in Australia (pp. 135–150). Sydney: Academic Press.

  • Iryu, Y., Nakamori, T., Matsuda, S., & Abe, O. (1995). Distribution of marine organisms and its geological significance in the modern reef complex of the Ryukyu Islands. Sedimentary Geology, 99, 243–258.

    Article  Google Scholar 

  • Iryu, Y., Bassi, D., & Woelkerling, W. (2009). Re-assessment of the type collections of fourteen corallinalean species (Corallinales, Rhodophyta) described by W. Ishijima (1942–1960). Palaeontology, 52, 401–427.

    Article  Google Scholar 

  • Jacob, K., & Sastri, V. V. (1951). Tertiary foraminifera from Sawai Bay, Car Nicobar Island. Science and Culture, 17, 181–182.

    Google Scholar 

  • James, N. P. (1997). The cool-water carbonate depositional realm. In: James NP, Clarke JDA (eds.) Cool-water carbonates. Special Publication SEPM, 56, 1–20.

    Google Scholar 

  • Kidwell, S. M., & Bosence, D. W. J. (1991). Taphonomy and time-averaging of marine shelly fauna. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing Data Locked in the Fossil Record (pp. 115–209). New York: Plenum Press.

  • Klicpera, A., Michel, J., & Westphal, H. (2015). Facies patterns of a tropical heterozoan carbonate platform under eutrophic conditions: the Banc d’ Arguin, Mauritania. Facies, 61, 421. doi:10.1007/s10347-014-0421-5.

    Article  Google Scholar 

  • Knowles, T., Taylor, P. D., Williams, M., Haywood, A. M., & Okamura, B. (2009). Pliocene seasonality across the North Atlantic inferred from cheilostome bryozoans. Palaeogeography Palaeoclimatology Palaeoecology, 277, 226–235.

    Article  Google Scholar 

  • Langer, M. R., & Hottinger, L. (2000). Biogeography of selected “larger” foraminifera. Micropaleontology, 46, 105–126.

    Google Scholar 

  • Lee, J. J., & Anderson, O. R. (1991). Symbiosis in Foraminifera. In J. J. Lee & O. R. Anderson (Eds.), Biology of Foraminifera (pp. 157–220). New York: Academic Press.

  • Lees, A. (1975). Possible influence of salinity and temperature on modern shelf carbonate sedimentation. Marine Geology, 19, 59–198.

    Article  Google Scholar 

  • Lees, A., & Buller, A. T. (1972). Modern temperate-water and warm-water shelf carbonate sediments contrasted. Marine Geology, 13, M67–M73.

    Article  Google Scholar 

  • Leslie, H. M., Breck, E. N., Chan, F., Lubchenco, J., & Menge, B. A. (2005). Barnacle reproductive hotspots linked to nearshore ocean conditions. Proceedings of National Academy Sciences USA, 102, 10534–10539.

    Article  Google Scholar 

  • Logan, B.W., Harding, J.L., Ahr, W.M., Williams, J.D., & Snead, R.G. (1969). Late Quaternary sediments of Yucatan Shelf, Mexico. In: Carbonate sediments and reefs, Volume 11. Yucatan Shelf, Mexico. AAPG Memoir, pp. 5–128.

  • Lokier, S.W. (2000). The Miocene Wonosari Formation, Java, Indonesia: Volcaniclastic influences on carbonate platform sedimentation. PhD thesis, University of London.

  • Michel, J., Vicens, G. M., & Westphal, H. (2011). Modern heterozoan carbonates from a eutrophic tropical shelf (Mauritania). Journal of Sedimentary Research, 81, 641–655.

    Article  Google Scholar 

  • Mihaljević, M., Renema, W., Welsh, K., & Pandolfi, J. M. (2014). Eocene-Miocene shallow-water carbonate platforms and increased habitat diversity in Sarawak, Malaysia. Palaios, 29, 378–391.

    Article  Google Scholar 

  • Moldovanyi, E.P., Wall, F.M., & Jun Yan, Z. (1995). Regional exposure events and platform evolution of Zhujiang Formation carbonates, Pearl River Mouth Basin: evidence from primary and diagenetic seismic facies. In: Budd, D.A., Saller, A.H., & Harris, P.M. (eds.) Unconformities and Porosity in Carbonate Strata. American Association of Petroleum Geologists Memoirs, 63, 125–140.

  • Mutti, M., & Hallock, P. (2003). Carbonate systems along nutrient and temperature gradients: some sedimentological and geochemical constraints. International Journal of Earth Sciences, 92, 465–475.

    Article  Google Scholar 

  • Nalin, R., Nelson, C. S., Basso, D., & Massari, F. (2008). Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island. Sedimentology, 55, 249–274.

    Article  Google Scholar 

  • Nebelsick, J.H., & Bassi, D. (2000). Diversity, growth-forms and taphonomy: key factors controlling the fabric of coralline algal dominated shelf carbonates. In: Insalaco, E., Skelton, P., & Palmer, T. (eds.) Carbonate platform systems: components and interactions. Geological Society London, Special Publications, 178, 89–107.

  • Nebelsick, J.H., Bassi, D., & Rasser, M.W. (2011). Microtaphofacies: exploring the potential for taphonomic analysis in carbonates. In: Allison, P., & Bottjer, D.J. (eds.) Taphonomy: process and bias through time. Topics in Geobiology, 32, 337–377.

  • Nelson, C. S., Keane, S. L., & Head, P. S. (1988). Non-tropical carbonate deposits on the modern New Zealand shelf. Sedimentary Geology, 60, 71–94.

    Article  Google Scholar 

  • Perrin, C., Bosence, D., & Rosen, B. (1995). Quantitative approaches to palaeozonation and palaeobathymetry of coral and coralline algae in Cenozoic reefs. In: Bosence, D.W.J., & Allison, P.A. (eds.) Marine palaeoenvironmental analysis from fossils. Geological Society London, Special Publications, 83, 181–229.

  • Pomar, L. (2001). Types of carbonate platforms: a genetic approach. Basin Research, 13, 313–334.

    Article  Google Scholar 

  • Pomar, L., Brandano, M., & Westphal, H. (2004). Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology, 51, 627–651.

    Article  Google Scholar 

  • Powell, E. N., Staff, G. M., Davies, D. J., & Callender, W. R. (1989). Macrobenthic death assemblages in modern marine environments: formation, interpretation, and application. Aquatic Science, 1, 555–589.

    Google Scholar 

  • Rao, C.P. (1996). Modern Carbonates, Tropical Temperate Polar. University of Tasmania, 206 pp.

  • Rasser, M. W., & Nebelsick, J. H. (2003). Provenance analysis of Oligocene autochthonous and allochthonous coralline algae: a quantitative approach towards reconstructing transported assemblages. Palaeogeography Palaeoclimatology Palaeoecology, 201, 89–111.

    Article  Google Scholar 

  • Rasser, M. W., & Piller, W. E. (1999). Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of Austrian Molasse Zone. Journal of Micropalaeontology, 18, 67–80.

    Article  Google Scholar 

  • Rasser, M. W., & Piller, W. E. (2004). Crustose algal frameworks from the Eocene Alpine Foreland. Palaeogeography Palaeoclimatology Palaeoecology, 206, 21–39.

    Article  Google Scholar 

  • Reiss, Z., & Hottinger, L. (1984). The Gulf of Aqaba: Ecological Micropaleontology. Ecological Studies, 50. Berlin: Springer.

    Book  Google Scholar 

  • Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., Lunt, P., Meyer, C. P., McMonagle, L. B., Morley, R. J., O’Dea, A., Todd, J. A., Wesselingh, F. P., Wilson, M. E. J., & Pandolfi, J. M. (2008). Hopping hotspots: global shifts in marine biodiversity. Science, 321, 654–657.

    Article  Google Scholar 

  • Rodolfo, K. S. (1969). Sediments of the Andaman Basin, Northeastern Indian Ocean. Marine Geology, 7, 371–402.

    Article  Google Scholar 

  • Saller, A. H., & Vijaya, S. (2002). Depositional and diagenetic history of the Kerendan carbonate platform, Oligocene, Central Kalimantan, Indonesia. Journal of Petroleum Geology, 25, 123–150.

    Article  Google Scholar 

  • Samankassou, E. (2002). Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria-Italy) and its implications. Geology, 30, 655–658.

    Article  Google Scholar 

  • Sanford, E., & Menge, B. A. (2001). Spatial and temporal variation in barnacle growth in a coastal upwelling system. Marine Ecology Progress Series, 209, 143–157.

    Article  Google Scholar 

  • Sarkar, S., & Ghosh, A. K. (2015). Evaluation of coralline algal diversity from the Serravallian carbonate sediments of Little Andaman Island (Hut Bay), India. Carbonates and Evaporites, 30, 13–24.

    Article  Google Scholar 

  • Schepper, S. D., Gibbard, P. L., Salzmann, U., & Ehlers, J. (2014). A global synthesis of the marine and terrestrial evidencefor glaciations during the Pliocene Epoch. Earth-Science Reviews, 135, 83–102.

    Article  Google Scholar 

  • Schlager, W. (2000). Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate factories. In: Insalaco, E., Skelton, P.W., & Palmer, P.J. (eds.) Carbonate platform systems: components and interactions. Geological Society London, Special Publications, 178, 217–227.

  • Schlager, W. (2003). Benthic carbonate factories of the Phanerozoic. International Journal of Earth Sciences, 92, 445–464.

    Article  Google Scholar 

  • Serrano-Brañas, C. I., & García, E. C. (2014). Taphonomic signatures, ichnofacies analysis and depositional dynamics of fossil macro-invertebrate assemblages of the San Juan Raya Formation, Zapotitlán Basin, Puebla. Mexico. Historical Biology. doi:10.1080/08912963.2014.915819.

    Google Scholar 

  • Sharma, V., & Srinivasan, M. S. (2007). Geology of Andaman-Nicobar: The Neogene. New Delhi: Capital Publishing Company. 162 pp.

  • Srinivasan, M. S. (1969). Miocene foraminifera from Hut Bay, Little Andaman Island, Bay of Bengal. Contributions from the Cushman Foundation for Foraminiferal Research, 20, 102–105.

    Google Scholar 

  • Srinivasan, M. S. (1975). Middle Miocene planktonic foraminifera from the Hut Bay Formation, Little Andaman Island, Bay of Bengal. Micropalaeontology, 21, 133–150.

    Article  Google Scholar 

  • Srinivasan, M. S. (1988). Late Cenozoic sequences of Andaman-Nicobar Islands: Their regional significance and correlation. Indian Journal of Geology, 60, 11–34.

    Google Scholar 

  • Srinivasan, M.S., & Azmi, R.J. (1976). New developments in the Late Cenozoic lithostratigraphy of Andaman-Nicobar Islands, Bay of Bengal. Proceedings of VIth Indian Colloquium on Micro-paleontology and Stratigraphy, Banaras Hindu University, Varanasi, pp. 302–327.

  • Srinivasan, M. S., & Sharma, V. (1973). Stratigraphy and Microfauna of Car Nicobar Island, Bay of Bengal. Journal of the Geological Society of India, 14, 1–11.

    Google Scholar 

  • Tomascik, T., Mah, A. J., Nontji, A., & Moosa, M. K. (1997). The Ecology of the Indonesia Seas. Singapore: Oxford University Press.

    Google Scholar 

  • Tucker, M. E., & Wright, V. P. (1990). Carbonate sedimentology. Oxford: Blackwell..

    Book  Google Scholar 

  • Van Bemmelen, R. W. (1949). General Geology of Indonesia and adjacent archipelagoes. The Geology of Indonesia I-A, The Hauge: Government Publishing Press, pp., 1–732.

  • Veron, J. E. N. (1995). Corals in Space and Time: The Biogeography and Evolution of the Scleractinians. Sydney: Cornell University Press.

    Google Scholar 

  • Westphal, H., Halfar, J., & Freiwald, A. (2010). Heterozoan carbonates in subtropical to tropical settings in the present and past. International Journal of Earth Sciences, 99, S153–S169.

    Article  Google Scholar 

  • Wilson, M. E. J. (2002). Cenozoic carbonates in Southeast Asia: implications for equatorial carbonate development. Sedimentary Geology, 147, 295–328.

    Article  Google Scholar 

  • Wilson, M. E. J. (2008). Global and regional influences on equatorial shallow-marine carbonates during the Cenozoic. Palaeogeography Palaeoclimatology Palaeoecology, 265, 262–274.

    Article  Google Scholar 

  • Wilson, M. E. J., & Rosen, B. R. R. (1998). Implications of the paucity of corals in the Paleogene of SE Asia: plate tectonics or centre of origin. In R. Hall & J. D. Holloway (Eds.), Biogeography and Geological Evolution of SE Asia (pp. 303–337). Amsterdam: Backhuys Publishers.

  • Wilson, M. E. J., & Vecsei, A. (2005). The apparent paradox of abundant foramol facies in low latitudes: their environmental significance and effect on platform development. Earth-Science Reviews, 69, 133–168.

    Article  Google Scholar 

  • Wilson, M. E. J., Bosence, D. W. J., & Limbong, A. (2000). Tertiary syntectonic carbonate platform development in Indonesia. Sedimentology, 47, 395–419.

    Article  Google Scholar 

  • Woelkerling, W. J. (1988). The Coralline Red Algae: An Analysis of the Genera and Subfamilies of Nongeniculate Corallinaceae. Oxford: Oxford University Press.

    Google Scholar 

  • Woelkerling, W. J., Irvine, L. M., & Harvey, A. (1993). Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Australian Systematic Botany, 6, 277–293.

    Article  Google Scholar 

  • Wright, C. A., & Murray, J. W. (1972). Comparisons of modern and Palaeogene foraminiferid distributions and their environmental implications. Memoires du Bureau de Recherches Geologiques et Minieres, 79, 87–96.

    Google Scholar 

  • Zabini, C., Holz, M., Bosetti, E. P., Matsumura, W. M. K., & Horodyski, R. S. (2012). Sequence stratigraphy and taphonomic signatures of marine invertebrates: a Devonian (Pragian/Eifelian) example of the Paraná Basin, Brazil. Journal of South American Earth Sciences, 33, 8–20.

    Article  Google Scholar 

  • Zoeram, F. Z., Vahidinia, M., Sadeghi, A., Mahboubi, A., & Bakhtiar, H. A. (2015). Larger benthic foraminifera: a tool for biostratigraphy, facies analysis and paleoenvironmental interpretations of the Oligo-Miocene carbonates, NW Central Zagros Basin, Iran. Arabian Journal of Geosciences, 8, 931–949.

    Article  Google Scholar 

Download references

Acknowledgements

I express my sincere gratitude to Prof. Sunil Bajpai, Director, Birbal Sahni Institute of Palaeobotany, for constant encouragement and all the necessary infrastructure facilities. Thanks are due to Dr. Samir Sarkar and Dr. Amit K. Ghosh for providing the study material for this investigation. The journal editors Dr. Peter Koenigshof and Dr. Sinje Weber are thanked for their valuable suggestions. The manuscript benefited immensely from meticulous reviews and insightful comments by Dr. André Freiwald (Senckenberg am Meer Wilhelmshaven) and Dr. André Klicpera (MARUM, Bremen). The Council of Scientific and Industrial Research, New Delhi, India, is thanked for the financial support (NET Fellowship, Grant No. 09/528(0016)/2009-EMR-I).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S. Upper Pliocene heterozoan assemblage from the Guitar Formation of Car Nicobar Island, India: palaeoecological implications and taphonomic signatures. Palaeobio Palaeoenv 96, 221–237 (2016). https://doi.org/10.1007/s12549-015-0214-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-015-0214-z

Keywords

Navigation