Skip to main content
Log in

A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China)

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

This study focuses on the three-dimensional (3D) reconstruction of an Late Jurassic fossil forest based on a fossil assemblage located in the Shishugou Formation near Jiangjunmiao, north-eastern Junggar Basin, Xinjiang Uygur Autonomous Region, Northwest China. On the basis of tree stumps found in growth position together with published data on megaplant fossils, seeds and spores, a high-resolution digital computer model, including different forest layers, was developed. In a study area of 31,500 m², 65 tree stumps with diameters between 0.2 and 2.9 m were mapped and subsequently used for the 3D reconstruction. The forest grew under moist conditions, probably close to the banks of an anastomosing river and consisted primarily of conifers, in particular Araucariaceae. Even though the tree density of the forest is only 22 trees/ha, the 3D reconstruction indicates a relatively closed canopy. Megaplant fossils and spores also show evidence for the presence of Angiopteris, Osmunda and Coniopteris, which were then used to reconstruct the understory of the forest. The trees were modelled in three different growth stages, representing young, older and mature trees, respectively. The growth parameters of individual trees and ferns were randomized in order to avoid duplications within the reconstruction. Detailed textures of leaves, fronds and bark were created to give the plants a more realistic appearance than that in previously published 3D reconstructions of fossil forest assemblages. Estimations of net biomass (approximately 9 tons/ha), annual biomass production and a calculation of nearest neighbour index (0.86) suggest an open forest with spatially distributed trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Allen MB, Windley BF, Zhang C (1993) Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics 220:89–115

    Article  Google Scholar 

  • Archibald S, Bond WJ (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102:3–14

    Article  Google Scholar 

  • Ashraf AR, Sun G, Wang X, Uhl D, Li C, Mosbrugger V (1999) The Triassic-Jurassic boundary in the Junggar basin (NW-China)—Preliminary palynostratigraphic results. Acta Palaeobot Suppl 2:85–91

    Google Scholar 

  • Ashraf RA, Sun Y-W, Sun G, Uhl D, Mosbrugger V, Li J, Herrmann M (2010) Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China - a review and additional lithological data. In: Martin T, Sun G, Mosbrugger V (eds) Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China. Palaeobio Palaeoenv 90(3). doi:10.1007/s12549-010-0034-0

  • Bamford MK, Philippe M (2001) Jurassic-Early Cretaceous Gondwanan homoxylous woods: a nomenclatural revision of the genera with taxonomic notes. Rev Palaeobot Palynol 113:287–297

    Article  Google Scholar 

  • Carder AC (1995) Forest giants of the world: past and present. Fitzhenry and Whiteside, Markham

    Google Scholar 

  • Collinson ME (2002) The ecology of Cainozoic ferns. Rev Palaeobot Palynol 119:51–68

    Article  Google Scholar 

  • Currie PJ, Zhao X-J (1993) A new carnosaur (Dinosauria, Theropoda) from the Jurassic of Xinjiang, People's Republic of China. Can J Earth Sci 30:2037–2081

    Article  Google Scholar 

  • Daviero V, Lecoustre R (2000) Computer simulation of sphenopsid architecture. Part II. Calamites multiramis Weiss, as an example of Late Paleozoic arborescent Sphenopsids. Rev Palaeobot Palynol 109:135–148

    Article  Google Scholar 

  • Daviero V, Meyer-Berthaud B, Lecoustre R (2000) Computer simulation of sphenopsid architecture. I. Principles and methodology. Rev Palaeobot Palynol 109:121–134

    Article  Google Scholar 

  • de Laubenfels DJ (1988) Coniferales. Flora Malesiana 10:337–453

    Google Scholar 

  • Dettmann ME, Clifford HT (2005) Biogeography of Araucariaceae. In: Dargavel J (ed) Araucarian forests. Australian Forest History Society, Kingston, pp 1–9

    Google Scholar 

  • Deussen O (2003) Regelbasierte Objekterzeugung. In: X.media.press (ed) Computergenerierte Pflanzen—Technik und Design digitaler Pflanzenwelten. Springer, Heidelberg, pp 93–119

    Chapter  Google Scholar 

  • Dice LR (1952) Measure of the spacing between individuals within a population. Contrib Lab Vert Biol Univ Mich 55:1–23

    Google Scholar 

  • Dong Z-M (1992) Dinosaurian faunas of China. Springer, Berlin and Heidelberg

    Google Scholar 

  • Eberth DA, Brinkman DB, Chen P-J, Yuan F-T, Wu S-Z, Li G, Cheng X-S (2001) Sequence stratigraphy, paleoclimate patterns, and vertebrate fossil preservation in Jurassic-Cretaceous strata of the Junggar Basin, Xinjiang Autonomous Region, People's Republic of China. Can J Earth Sci 38:1627–1644

    Google Scholar 

  • Ebner M (2005) Entwicklung eines Monitoringverfahrens auf pollenanalytischer Basis zur Charakterisierung ökologischer Einheiten im Bereich der südbrasilianischen Mata Atlântica und Rekonstruktion der Vegetationsgeschichte des Pró-Mata Gebietes. PhD thesis. Eberhard-Karls-Universität, Tübingen

  • Greuter W, McNeill J, Barrie FR, Burdet HM, Demoulin V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, Trehane P, Turland NJ, Hawksworth DL (2000) International Code of Botanical Nomenclature (Saint Louis Code) adopted by the 16th Int Bot Congress. Koeltz Scientific Books, Königstein

  • Hartig T (1848) Beiträge zur Geschichte der Pflanzen und zur Kenntniss der norddeutschen Braunkohlen-Flora. Bot Zeit 6:122–128, 137–141, 166–172,185–190

    Google Scholar 

  • Iwasa Y, Cohen D, Leon JA (1985) Tree height and crown shape, as results of competitive games. J Theor Biol 112:279–297

    Article  Google Scholar 

  • Keller AM, Hendrix MS (1997) Paleoclimatologic analysis of a Late Jurassic petrified forest, southeastern Mongolia. Palaios 12:282–291

    Article  Google Scholar 

  • Korall P, Pryer KM, Metzgar JS, Schneider H, Conant DS (2006) Tree ferns: Monophyletic groups and their relationships as revealed by four protein-coding loci. Mol Phylogenet Evol 39:830–845

    Article  Google Scholar 

  • Kraus G (1870) Bois Fossiles de Conifères. In: Schimper WP (ed) Traité de Paléontologie Végetale, Baillière et fils, Strasbourg, pp 363–385

  • Lee KY (1985) Geology of the petroleum and coal deposits in the Junggar (Zhungaer) Basin, Xinjiang Uygur Zizhiqu, Northwest China. USGS Open-File Report. National Academy Press, Washington D.C., pp 85–230

  • Ludwig F, De Kroon H, Prins H (2008) Impacts of savanna trees on forage quality for a large African herbivore. Oecologia 155:487–496

    Article  Google Scholar 

  • Maisch MW, Matzke AT, Grossmann F, Stöhr H, Pfretzschner H-U, Sun G (2005) The first haramiyoid mammal from Asia. Naturwissenschaften 92:40–44

    Article  Google Scholar 

  • Marquis RJ (1996) Plant architecture, sectoriality and plant tolerance to herbivores. Plant Ecol 127:85–97

    Article  Google Scholar 

  • Martin T, Averianov AO, Pfretzschner H-U (2010) Mammals from the Late Jurassic Qigu Formation in the southern Junggar Basin, Xinjiang, Northwest China. In: Martin T, Sun G, Mosbrugger V (eds) Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China. Paleobio Palaeoenv 90(3). doi:10.1007/st12549-010-0030-4

  • McKnight CL, Graham SA, Carroll AR, Gan Q, Dilcher DL, Zhao M, Liang Y-H (1990) Fluvial sedimentology of an Upper Jurassic petrified forest assemblage, Shishu Formation, Junggar Basin, Xinjiang, China. Palaeogeogr Palaeoclimatol Palaeoecol 79:1–9

    Article  Google Scholar 

  • McNaughton SJ (1976) Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191:92–94

    Article  Google Scholar 

  • McNaughton SJ (1979) Grazing as optimization process: grass-ungulate relationships in the Serengeti. Am Nat 113:691–703

    Article  Google Scholar 

  • McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Article  Google Scholar 

  • Miller CN (1967) Evolution of the fern genus Osmunda. Contrib Mus Pal Univ Michigan 21:139–206

    Google Scholar 

  • Miller CN Jr, Lapasha CA (1985) Two species of Elatocladus from the early Cretaceous Potomac Group of Virginia. Rev Palaeobot Palynol 44:183–191

    Article  Google Scholar 

  • Milton SJ (1991) Plant spinescence in arid southern Africa: does moisture mediate selection by mammals? Oecologia 87:279–287

    Article  Google Scholar 

  • Miquel SE, Ramírez R, Thomé JW (2004) Lista preliminar de los Punctoideos de Rio Grande do Sul, Brasil, con descripción de dos especies nuevas (Mollusca, Gastropoda, Stylommatophora). Rev Bras Zool 21:925–935

    Article  Google Scholar 

  • Morrow PA, Lamarche VCJ (1978) Tree ting evidence for chronic insect suppression of productivity in subalpine Eucalyptus. Science 201:1244–1246

    Article  Google Scholar 

  • Mosbrugger V (1990) The tree habit in land plants: a functional comparison of trunk constructions with a brief introduction into the biomechanics of trees. In: Mosbrugger V (ed) Lecture notes in earth sciences, vol 28: the tree habit in land plants: a functional comparison of trunk constructions with a brief introduction into the biomechanics of trees. Springer, Berlin New York

  • Mosbrugger V, Gee CT, Belz G, Ashraf AR (1994) Three-dimensional reconstruction of an in-situ Miocene peat forest from the Lower Rhine Embayment, northwestern Germany- new methods in palaeovegetation analysis. Palaeogeogr Palaeoclimatol Palaeoecol 110:295–317

    Article  Google Scholar 

  • Niklas KJ (1994) Predicting the height of fossil plant remains: an allometric approach to an old problem. Am J Bot 81:1235–1242

    Article  Google Scholar 

  • NSW National Parks and Wildlife Service (2001) Recovery Plan for the Giant Fern (Angiopteris evecta). Huntsville

  • Ohsawa T, Nishida H, Nishida M (1995) Yezonia, a new section of Araucaria (Araucariaceae) based on permineralized vegetative and reproductive organs of A. vulgaris comb. nov. from the upper Cretaceous of Hokkaido, Japan. J Plant Res 108:25–39

    Article  Google Scholar 

  • Oplustil S, Psenicka J, Libertín M, Bashforth AR, Simunek Z, Drábková J, Dasková J (2009) A Middle Pennsylvanian (Bolsovian) peat-forming forest preserved in situ in volcanic ash of the Whetstone Horizon in the Radnice Basin, Czech Republic. Rev Palaeobot Palynol 155:234–274

    Article  Google Scholar 

  • Pfretzschner H-U, Ashraf AR, Maisch MW, Sun G, Wang Y-D, Mosbrugger V (2001) Cyclic growth in dinosaur bones from the Upper Jurassic of NW China and its paleoclimatic implications. In: Sun G, Mosbrugger V, Ashraf AR, Wang Y-D (eds) The advanced study of prehistory life and geology of Junggar Basin, Xinjiang, China. Proc Sino-German Cooperation Symp Prehistory Life and Geology of Junggar Basin, Xinjiang, China. Urumqi, pp 21–39

  • Pfretzschner HU, Martin T, Maisch MW, Matzke AT, Sun G (2005) A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China. Acta Palaeontol Pol 50:799–808

    Google Scholar 

  • Pramparo MB (1989) Las esporas de Schizaeaceae (Cicatricosisporites y Appendicisporites) del Cretácico inferior, Cuenca de San Luis, Argentina. Rev Esp Micropaleontol 21:355–372

    Google Scholar 

  • Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–621

    Article  Google Scholar 

  • Rothwell GW (1996) Pteridophytic evolution: an often underappreciated phytological success story. Rev Palaeobot Palynol 90:209–222

    Article  Google Scholar 

  • Russell DA, Zheng Z (1993) A large mamenchisaurid from the Junggar Basin, Xinjiang, People's Republic of China. Can J Earth Sci 30:2082–2095

    Article  Google Scholar 

  • Schneider H, Schuettpelz E, Pryer KM, Cranfill R, Magallón S, Lupia R (2004) Ferns diversified in the shadow of angiosperms. Nature 428:553

    Article  Google Scholar 

  • Schölch A (2000) Relations between submarginal and marginal sori in ferns II. The sori of selected Dicksoniaceae and Hymenophyllaceae. Plant Syst Evol 220:185–198

    Article  Google Scholar 

  • Schromm S (2006) Vergleich der Streu-Dynamik in Araukarien- und Laubwäldern der Pró-Mata Forschungsstation. PhD thesis. Eberhard Karls Universität Tübingen, Tübingen

  • Selmeier A (1990) Anatomische Untersuchungen an verkieselten Hölzern. Holz Roh Werkst 48:111–115

    Article  Google Scholar 

  • Setoguchi H, Osawa TA, Pintaud J-C, Jaffré T, Veillon J-M (1998) Phylogenetic relationships within Araucariaceae based on RBCL gene sequences. Am J Bot 85:1507–1516

    Article  Google Scholar 

  • Sharps R, McWilliams M, Li YP, Cox A, Zhang ZK, Zhai YJ, Gao ZJ, Li YG, Li Q (1989) Lower Permian paleomagnetism of the Tarim block, northwestern China. Earth Planet Sci Lett 92:275–291

    Article  Google Scholar 

  • Smith I, Butler D (2002) The Bunya in Queensland's forests. Queensland Rev 9:31–39

    Article  Google Scholar 

  • Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG (2006) A classification for extant ferns. Taxon 55:705–731

    Article  Google Scholar 

  • Stratigraphic Group of Xinjiang (1981) Regional Stratigraphic Table (Chart) of Northwestern China. Geological Publishing House, Beijing

  • Summit J, Sommer R (1999) Further studies of preferred tree shapes. Environ Behav 31:550–576

    Article  Google Scholar 

  • Taylor TN, Taylor EL, Krings M (2008) The biology and evolution of fossil plants. Academic Press, Burlington

    Google Scholar 

  • Taylor MP, Wedel MJ, Naish D (2009) Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontol Pol 54:213–220

    Article  Google Scholar 

  • Tidwell WD, Ash SR (1994) A Review of Selected Triassic to Early Cretaceous Ferns. J Plant Res 107:417–442

    Article  Google Scholar 

  • Tütken T, Pfretzschner H-U, Vennemann TW, Sun G, Wang Y-D (2004) Paleobiology and skeletochronology of Jurassic dinosaurs: implications for the histology and oxygen isotope compositions of bones. Palaeogeogr Palaeoclimatol Palaeoecol 206:217–238

    Article  Google Scholar 

  • Veblen TT, Delmastro RN (1976) The Araucaria araucana gene resource in Chile. For Genet Resour Inf 5:2–6

  • Veblen TT, Armesto JJ, Burns BR, Kitzberger T, Lara A, Léon B, Young KR (2005) The coniferous forests of South America. In: Andersson F, Gessel S (eds) Ecosystems of the world: coniferous forests. Elsevier, Amsterdam, pp 701–725

    Google Scholar 

  • Vesey-Fitzgerald DF (1973) Animal impact on vegetation and plant succession in Lake Manyara National Park, Tanzania. Oikos 24:314–325

    Article  Google Scholar 

  • Wang Y-D, Zhang W, Saiki K (2000) Fossil woods from the Upper Jurassic of Qitai, Junggar Basin, Xinjiang, China. Acta Palaeontol Sinica 39:176–185

    Google Scholar 

  • Watson MP, Hayward AB, Parkinson DN, Zhang ZM (1987) Plate tectonic history, basin development and petroleum source rock deposition onshore China. Mar Petrol Geol 4:205–225

    Article  Google Scholar 

  • Whitham TG, Mopper S (1985) Chronic Herbivory: Impacts on architecture and sex expression of Pinyon Pine. Science 228:1089–1091

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003a) Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Taylor KD (2003b) Reconstruction of Tertiary Metasequoia forests. I. Test of a method for biomass determination on stem dimensions. Paleobiology 29:256–270

    Article  Google Scholar 

  • Williams CJ, Mendell EK, Murphy J, Court WM, Johnson AH, Richter SL (2008) Paleoenvironmental reconstruction of a Middle Miocene forest from the western Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 261:160–176

    Article  Google Scholar 

  • Woodwell GM, Whittaker RH (1968) Primary production in terrestrial ecosystems. Am Zool 8:19–30

    Article  Google Scholar 

  • Xu X, Forster CA, Clark JM, Mo J (2006) A basal ceratopsian with transitional features from the Late Jurassic of northwestern China. Proc Roy Soc B Biol Sci 273:2135–2140

    Google Scholar 

  • Zhao J, Liu G, Lu Z, Zhang X, Guoze Z (2003) Lithospheric structure and dynamic processes of the Tianshan orogenic belt and the Junggar basin. Tectonophysics 376:199–239

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks go to all the staff members of the Geological Survey No. 1 of Xinjiang, Urumqi, as well as to the colleagues of Nanjing, Beijing and Tübingen for their invaluable support during the field work, logistics and organization. We would also like to thank the Deutsche Forschungsgemeinschaft for financially supporting our field trip to China. Furthermore, we would like to thank the reviewers, especially Dr. D. Uhl for their comments and their constructive proposals, which helped to refine this publication. Special thanks also goes to Dr. W. Joyce for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliane K Hinz.

Additional information

This article is a contribution to the special issue “Triassic-Jurassic biodiversity, ecosystems, and climate in the Junggar Basin, Xinjiang, Northwest China”

Appendix

Appendix

Table 1 Data table containing information on automatic level measurements (angle, direction and position) and the resulting Cartesian coordinate values
Table 2 Data table containing tree numbers, corresponding diameter measurements and calculated tree heights

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinz, J.K., Smith, I., Pfretzschner, HU. et al. A high-resolution three-dimensional reconstruction of a fossil forest (Upper Jurassic Shishugou Formation, Junggar Basin, Northwest China). Palaeobio Palaeoenv 90, 215–240 (2010). https://doi.org/10.1007/s12549-010-0036-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-010-0036-y

Keywords

Navigation