Skip to main content
Log in

Dental pulp regeneration

In vitro and in vivo approaches

  • review
  • Published:
international journal of stomatology & occlusion medicine

Abstract

Trauma in the oral region and tooth avulsion are a major part of injuries in children, adolescents, and young adults. Established methods used to manage these cases provide mainly repair, but not regeneration. Tissue engineering paves the way for research in the new field of regenerative endodontics to overcome the limits of conservative strategies. This review aims to provide an overview of the available in vitro and in vivo models for dental pulp regeneration. The review covers different in vitro models, including two- and three-dimensional models and organ cultures, comprising both ectopic and orthotopic approaches. These models show the great potential of tissue engineering for regenerative endodontics, which can lead to regeneration of the pulp–dentin complex in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kojima K, Inamoto K, Nagamatsu K, Hara A, Nakata K, Morita I, et al. Success rate of endodontic treatment of teeth with vital and nonvital pulps. A meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:95–9.

    Article  PubMed  Google Scholar 

  2. Dammaschke T, Steven D, Kaup M, Ott KH. Long-term survival of root-canal-treated teeth: a retrospective study over 10 years. J Endod. 2003;29:638–43.

    Article  PubMed  Google Scholar 

  3. Yoldas O, Oztunc H, Tinaz C, Alparslan N. Perforation risks associated with the use of Masserann endodontic kit drills in mandibular molars. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:513–7.

    Article  PubMed  Google Scholar 

  4. Suter B, Lussi A, Sequeira P. Probability of removing fractured instruments from root canals. Int Endod J. 2005;38:112–23.

    Article  CAS  PubMed  Google Scholar 

  5. Schmalz G, Smith AJ. Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies. J Endod. 2014;40:S2–S5.

    Article  PubMed  Google Scholar 

  6. Ohman U, Onne L. [Carpal ganglion. Rectrospective study]. Nord Med. 1970;84:1380.

    CAS  PubMed  Google Scholar 

  7. Nosrat A, Homayounfar N, Oloomi K. Drawbacks and unfavorable outcomes of regenerative endodontic treatments of necrotic immature teeth: a literature review and report of a case. J Endod. 2012;38:1428–34.

    Article  PubMed  Google Scholar 

  8. Ohba S, Yano F, Chung U-i. Tissue engineering of bone and cartilage. IBMS BoneKEy. 2009;6:405–19.

    Article  Google Scholar 

  9. Russell WMS, Burch RL. The principles of humane experimental technique. London: Methuen; 1959.

    Google Scholar 

  10. James Kirkpatrick C, Fuchs S, Iris Hermanns M, Peters K, Unger RE. Cell culture models of higher complexity in tissue engineering and regenerative medicine. Biomaterials. 2007;28:5193–8.

    Article  PubMed  Google Scholar 

  11. Muller HD, Cvikl B, Gruber R, Watzek G, Agis H. Prolyl hydroxylase inhibitors increase the production of vascular endothelial growth factor in dental pulp-derived cells. J Endod. 2012;38:1498–503.

    Article  PubMed  Google Scholar 

  12. Cvikl B, Agis H, Stogerer K, Moritz A, Watzek G, Gruber R. The response of dental pulp-derived cells to zoledronate depends on the experimental model. Int Endod J. 2011;44:33–40.

    Article  CAS  PubMed  Google Scholar 

  13. Duncan HF, Smith AJ, Fleming GJ, Cooper PR. Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J Endod. 2012;38:339–45.

    Article  PubMed  Google Scholar 

  14. Bansal R, Bansal R. Regenerative endodontics: a state of the art. Indian J Dent Res. 2011;22:122–31.

    Article  PubMed  Google Scholar 

  15. Estrela C, Alencar AH, Kitten GT, Vencio EF, Gava E. Mesenchymal stem cells in the dental tissues: perspectives for tissue regeneration. Braz Dent J. 2011;22:91–8.

    Article  PubMed  Google Scholar 

  16. Saber SE. Tissue engineering in endodontics. J Oral Sci. 2009;51:495–507.

    Article  CAS  PubMed  Google Scholar 

  17. Agis H, Stampfl B, Watzek G, Gruber R. Activated platelets increase proliferation and protein synthesis of human dental pulp-derived cells. Int Endod J. 2010;43:115–24.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan C, Wang P, Zhu L, Dissanayaka WL, Green DW, Tong EH, et al. Coculture of stem cells from apical papilla and human umbilical vein endothelial cell under hypoxia increases the formation of three-dimensional vessel-like structures in vitro. Tissue Eng Part A. 2015;21:1163–72.

    Article  CAS  PubMed  Google Scholar 

  19. Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hakki SS, Kayis SA, Hakki EE, Bozkurt SB, Duruksu G, Unal ZS, et al. Comparison of mesenchymal stem cells isolated from pulp and periodontal ligament. J Periodontol. 2015;86:283–91.

    Article  CAS  PubMed  Google Scholar 

  21. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–4.

    Article  CAS  PubMed  Google Scholar 

  22. Murakami M, Hayashi Y, Iohara K, Osako Y, Hirose Y, Nakashima M. Trophic effects and regenerative potential of mobilized mesenchymal stem cells from bone marrow and adipose tissue as alternative cell sources for pulp/dentin regeneration. Cell Transplant. 2014;24:1753–65.

    Article  PubMed  Google Scholar 

  23. Huang GT. Pulp and dentin tissue engineering and regeneration: current progress. Regen Med. 2009;4:697–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action. J Endod. 2007;33:377–90.

    Article  PubMed  Google Scholar 

  25. Nakashima M. Establishment of primary cultures of pulp cells from bovine permanent incisors. Arch Oral Biol. 1991;36:655–63.

    Article  CAS  PubMed  Google Scholar 

  26. Iohara K, Zheng L, Ito M, Tomokiyo A, Matsushita K, Nakashima M. Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells. 2006;24:2493–503.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang W, Walboomers XF, Wolke JG, Bian Z, Fan MW, Jansen JA. Differentiation ability of rat postnatal dental pulp cells in vitro. Tissue Eng. 2005;11:357–68.

    Article  CAS  PubMed  Google Scholar 

  28. Tonomura A, Sumita Y, Ando Y, Iejima D, Kagami H, Honda MJ, et al. Differential inducibility of human and porcine dental pulp-derived cells into odontoblasts. Connect Tissue Res. 2007;48:229–38.

    Article  CAS  PubMed  Google Scholar 

  29. Kellner M, Steindorff MM, Strempel JF, Winkel A, Kuhnel MP, Stiesch M. Differences of isolated dental stem cells dependent on donor age and consequences for autologous tooth replacement. Arch Oral Biol. 2014;59:559–67.

    Article  PubMed  Google Scholar 

  30. Eubanks EJ, Tarle SA, Kaigler D. Tooth storage, dental pulp stem cell isolation, and clinical scale expansion without animal serum. J Endod. 2014;40:652–7.

    Article  PubMed  Google Scholar 

  31. Lopez-Cazaux S, Bluteau G, Magne D, Lieubeau B, Guicheux J, Alliot-Licht B. Culture medium modulates the behaviour of human dental pulp-derived cells: technical note. Eur Cell Mater. 2006;11:35–42.

    CAS  PubMed  Google Scholar 

  32. Lee TH, Kim WT, Ryu CJ, Jang YJ. Optimization of treatment with recombinant FGF-2 for proliferation and differentiation of human dental stem cells, mesenchymal stem cells, and osteoblasts. Biochem Cell Biol. 2015;26:1–8.

    Article  Google Scholar 

  33. Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ. 2003;67:678–89.

    PubMed  Google Scholar 

  34. Liu L, Wei X, Ling J, Wu L, Xiao Y. Expression pattern of Oct-4, Sox2, and c-Myc in the primary culture of human dental pulp derived cells. J Endod. 2011;37:466–72.

    Article  PubMed  Google Scholar 

  35. Kim EC, Park H, Lee SI, Kim SY. Effect of the acidic dental resin monomer 10-methacryloyloxydecyl dihydrogen phosphate on odontoblastic differentiation of human dental pulp cells. Basic Clin Pharmacol Toxicol. 2015;117:340–9.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Y, Fan W, Xiao Y. The effect of hypoxia on the stemness and differentiation capacity of PDLC and DPC. Biomed Res Int. 2014. doi:10.1155/2014/890675.

  37. de Lima CL, Coelho MS, Royer C, Resende AP, Borges GA, Rodrigues da Silva J, et al. Rosiglitazone inhibits proliferation and induces osteopontin gene expression in human dental pulp cells. J Endod. 2015;41:1486–91.

    Article  PubMed  Google Scholar 

  38. Zhu L, Yang J, Zhang J, Peng B. A comparative study of BioAggregate and ProRoot MTA on adhesion, migration, and attachment of human dental pulp cells. J Endod. 2014;40:1118–23.

    Article  PubMed  Google Scholar 

  39. Williams DW, Wu H, Oh JE, Fakhar C, Kang MK, Shin KH, et al. 2-Hydroxyethyl methacrylate inhibits migration of dental pulp stem cells. J Endod. 2013;39:1156–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gong QM, Ling JQ, Jiang HW, Du Y, Yang F. [Expression and significance of stromal cell-derived factor-1alpha and its receptor CXCR4 in human dental pulp cells]. Zhonghua Kou Qiang Yi Xue Za Zhi. 2008;43:146–50.

    CAS  PubMed  Google Scholar 

  41. Baiguera S, Ribatti D. Endothelialization approaches for viable engineered tissues. Angiogenesis. 2013;16:1–14.

    Article  CAS  PubMed  Google Scholar 

  42. Notani T, Tabata MJ, Iseki H, Baba O, Takano Y. Introduction of a three-dimensional and layered (TDL) culture, a novel primary co-culture method for ameloblasts and pulp-derived cells. Arch Histol Cytol. 2009;72:187–98.

    Article  PubMed  Google Scholar 

  43. Galler KM, Eidt A, Schmalz G. Cell-free approaches for dental pulp tissue engineering. J Endod. 2014;40:S41–5.

    Article  PubMed  Google Scholar 

  44. Albuquerque MT, Valera MC, Nakashima M, Nor JE, Bottino MC. Tissue-engineering-based strategies for regenerative endodontics. J Dent Res. 2014;93:1222–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schuster U, Schmalz G, Thonemann B, Mendel N, Metzl C. Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod. 2001;27:259–65.

    Article  CAS  PubMed  Google Scholar 

  46. Colombo JS, Moore AN, Hartgerink JD, D’Souza RN. Scaffolds to control inflammation and facilitate dental pulp regeneration. J Endod. 2014;40:S6–S12.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Neunzehn J, Weber MT, Wittenburg G, Lauer G, Hannig C, Wiesmann HP. Dentin-like tissue formation and biomineralization by multicellular human pulp cell spheres in vitro. Head Face Med. 2014;10:25.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiao L, Kumazawa Y, Okamura H. Cell death, cavitation and spontaneous multi-differentiation of dental pulp stem cells-derived spheroids in vitro: a journey to survival and organogenesis. Biol Cell. 2014;106:405–19.

    Article  CAS  PubMed  Google Scholar 

  49. Sakai VT, Cordeiro MM, Dong Z, Zhang Z, Zeitlin BD, Nor JE. Tooth slice/scaffold model of dental pulp tissue engineering. Adv Dent Res. 2011;23:325–32.

    Article  CAS  PubMed  Google Scholar 

  50. Camilleri J, Laurent P, About I. Hydration of Biodentine, Theracal LC, and a prototype tricalcium silicate-based dentin replacement material after pulp capping in entire tooth cultures. J Endod. 2014;40:1846–54.

    Article  PubMed  Google Scholar 

  51. Trimmel K, Cvikl B, Muller HD, Nurnberger S, Gruber R, Moritz A, et al. L-mimosine increases the production of vascular endothelial growth factor in human tooth slice organ culture model. Int Endod J. 2015;48:252–60.

    Article  CAS  PubMed  Google Scholar 

  52. Farges JC, Romeas A, Melin M, Pin JJ, Lebecque S, Lucchini M, et al. TGF-beta1 induces accumulation of dendritic cells in the odontoblast layer. J Dent Res. 2003;82:652–6.

    Article  CAS  PubMed  Google Scholar 

  53. Lehmann N, Debret R, Romeas A, Magloire H, Degrange M, Bleicher F, et al. Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J Dent Res. 2009;88:77–82.

    Article  CAS  PubMed  Google Scholar 

  54. Murray PE, Smith AJ, Garcia-Godoy F, Lumley PJ. Comparison of operative procedure variables on pulpal viability in an ex vivo model. Int Endod J. 2008;41:389–400.

    Article  CAS  PubMed  Google Scholar 

  55. Goncalves SB, Dong Z, Bramante CM, Holland GR, Smith AJ, Nor JE. Tooth slice-based models for the study of human dental pulp angiogenesis. J Endod. 2007;33:811–4.

    Article  PubMed  Google Scholar 

  56. Suzuki T, Lee CH, Chen M, Zhao W, Fu SY, Qi JJ, et al. Induced migration of dental pulp stem cells for in vivo pulp regeneration. J Dent Res. 2011;90:1013–8.

    Article  CAS  PubMed  Google Scholar 

  57. El-Backly RM, Massoud AG, El-Badry AM, Sherif RA, Marei MK. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits. Aust Endod J. 2008;34:52–67.

    Article  PubMed  Google Scholar 

  58. Kim K, Lee CH, Kim BK, Mao JJ. Anatomically shaped tooth and periodontal regeneration by cell homing. J Dent Res. 2010;89:842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nakashima M, Iohara K. Mobilized dental pulp stem cells for pulp regeneration: initiation of clinical trial. J Endod. 2014;40:S26–S32.

    Article  PubMed  Google Scholar 

  60. Kuo TF, Huang AT, Chang HH, Lin FH, Chen ST, Chen RS, et al. Regeneration of dentin-pulp complex with cementum and periodontal ligament formation using dental bud cells in gelatin-chondroitin-hyaluronan tri-copolymer scaffold in swine. J Biomed Mater Res A. 2008;86:1062–8.

    Article  PubMed  Google Scholar 

  61. Jiao L, Xie L, Yang B, Yu M, Jiang Z, Feng L, et al. Cryopreserved dentin matrix as a scaffold material for dentin-pulp tissue regeneration. Biomaterials. 2014;35:4929–39.

    Article  CAS  PubMed  Google Scholar 

  62. Cordeiro MM, Dong Z, Kaneko T, Zhang Z, Miyazawa M, Shi S, et al. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–9.

    Article  PubMed  Google Scholar 

  63. Mullane EM, Dong Z, Sedgley CM, Hu JC, Botero TM, Holland GR, et al. Effects of VEGF and FGF2 on the revascularization of severed human dental pulps. J Dent Res. 2008;87:1144–8.

    Article  CAS  PubMed  Google Scholar 

  64. Dissanayaka WL, Zhu L, Hargreaves KM, Jin L, Zhang C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. J Dent Res. 2014;93:1296–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Syed-Picard FN, Ray HL Jr, Kumta PN, Sfeir C. Scaffoldless tissue-engineered dental pulp cell constructs for endodontic therapy. J Dent Res. 2014;93:250–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dissanayaka WL, Hargreaves KM, Jin L, Samaranayake LP, Zhang C. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Eng Part A. 2015;21:550–63.

    Article  CAS  PubMed  Google Scholar 

  67. Rosa V, Zhang Z, Grande RH, Nor JE. Dental pulp tissue engineering in full-length human root canals. J Dent Res. 2013;92:970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16:3023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ruangsawasdi N, Zehnder M, Weber FE. Fibrin gel improves tissue ingrowth and cell differentiation in human immature premolars implanted in rats. J Endod. 2014;40:246–50.

    Article  PubMed  Google Scholar 

  70. Takeuchi N, Hayashi Y, Murakami M, Alvarez FJ, Horibe H, Iohara K, et al. Similar in vitro effects and pulp regeneration in ectopic tooth transplantation by basic fibroblast growth factor and granulocyte-colony stimulating factor. Oral Dis. 2015;21:113–22.

    Article  CAS  PubMed  Google Scholar 

  71. Kikuchi N, Kitamura C, Morotomi T, Inuyama Y, Ishimatsu H, Tabata Y, et al. Formation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels. J Endod. 2007;33:1198–202.

    Article  PubMed  Google Scholar 

  72. Ishimatsu H, Kitamura C, Morotomi T, Tabata Y, Nishihara T, Chen KK, et al. Formation of dentinal bridge on surface of regenerated dental pulp in dentin defects by controlled release of fibroblast growth factor-2 from gelatin hydrogels. J Endod. 2009;35:858–65.

    Article  PubMed  Google Scholar 

  73. Zheng L, Amano K, Iohara K, Ito M, Imabayashi K, Into T, et al. Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury. Am J Pathol. 2009;175:1905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Darwish SS, Abd E, Meguid SH, Wahba NA, Mohamed AA, Chrzanowski W, Abou Neel EA. Root maturation and dentin-pulp response to enamel matrix derivative in pulpotomized permanent teeth. J Tissue Eng. 2014;5. doi:10.1177/2041731414521707.

  75. Zhu X, Wang Y, Liu Y, Huang GT, Zhang C. Immunohistochemical and histochemical analysis of newly formed tissues in root canal space transplanted with dental pulp stem cells plus platelet-rich plasma. J Endod. 2014;40:1573–8.

    Article  PubMed  Google Scholar 

  76. Yoo YJ, Lee W, Cho YA, Park JC, Shon WJ, Baek SH. Effect of conditioned medium from preameloblasts on regenerative cellular differentiation of the immature teeth with necrotic pulp and apical periodontitis. J Endod. 2014;40:1355–61.

    Article  PubMed  Google Scholar 

  77. Iohara K, Murakami M, Nakata K, Nakashima M. Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol. 2014;52:39–45.

    Article  PubMed  Google Scholar 

  78. Huang GT. Dental pulp and dentin tissue engineering and regeneration: advancement and challenge. Front Biosci (Elite. Ed). 2011;3:788–800.

    Article  Google Scholar 

  79. Ribatti D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol. 2008;270:181–224.

    Article  CAS  PubMed  Google Scholar 

  80. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Muller HD, Cvikl B, Janjic K, Nurnberger S, Moritz A, Gruber R, et al. Effects of prolyl dydroxylase inhibitor L-mimosine on dental pulp in the presence of advanced glycation end products. J Endod. 2015;41:1852–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge that their research on prolyl hydroxylase inhibitors was funded by Grant RCL 653 from the International Team for Implantology (Basel, Switzerland), Grant 10-063 of the Osteology Foundation (Lucerne, Switzerland), and the Erwin Schrödinger Fellowship the Austrian Science Fund (FWF): J3379-B19. We thank Sylvia Nürnberger (Department of Trauma Surgery, Medical University of Vienna, Vienna; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria) for performing the histology and Heinz-Dieter Müller (Department of Prosthodontics, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Preventive, Restorative and Pediatric Dentistry, University of Bern, Bern, Switzerland) for image preparation.

Conflict of interest

K. Janjić, B. Cvikl, A. Moritz, and H. Agis state that there are no conflicts of interest. The accompanying manuscript does not include studies on humans or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Agis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janjić, K., Cvikl, B., Moritz, A. et al. Dental pulp regeneration. J. Stomat. Occ. Med. 8 (Suppl 1), 1–9 (2016). https://doi.org/10.1007/s12548-015-0139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12548-015-0139-1

Keywords

Navigation