Skip to main content

Advertisement

Log in

Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria)

  • Research Paper
  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

Pretribosphenic dryolestoid molars are characterized by a reversed triangular alignment of the “primary trigon” (formed by the paracone, metacone and stylocone) and trigonid crucial for the embrasure shearing process. These molars are abraded along the protocristid and paracristid, and show a typical wear pattern with mesially and distally sloping dentine fields due to their thin enamel. The wear pattern of lipotyphlan and didelphid tribosphenic molars with considerably thicker enamel does not show this sloping. In dryolestoid molars two directions of striations occur. Steeper striations oriented linguo-buccally are present on facet 1 below the protocristid, and about 10° less inclined striations of the same direction have been observed near the talonid base. This reflects the railing function of the hypoflexid for the paracone of the corresponding upper molar. Facet 3 in the hypoflexid gets steeper with progressive wear, whereas facets 1 and 2 on the mesial and distal sides of the trigonid are flattened during wear. In the masticatory process the hypoflexid has mainly a shearing function with a crushing component because of its lesser inclination than the functional shearing surfaces below the trigonid crests. Striations on the exposed dentine field along the paracristid and in the guiding groove of facet 3 indicate that these two surfaces were formed by attrition (tooth to tooth contact). The exposed dentine fields at the cusp apices and along the protocristid are gauged and therefore must be a result of abrasion (tooth to food contact).

Kurzfassung

Bei den prätribosphenischen Dryolestoidea sind das “primäre Trigon” (gebildet von Paracon, Metacon und Stylocon) der Oberkiefer-Molaren und das Trigonid der Unterkiefer-Molaren als alternierende Dreiecke angeordnet, was Voraussetzung für das interdentale Scheren ist. Abgekaute untere Molaren zeigen entlang des Protocristids und des Paracristids typische Abrasionsmuster, die durch freigelegte, nach mesial und distal abfallende Dentinfelder charakterisiert sind. Dieses charakteristische Abrasionsmuster ist durch die geringe Schmelzdicke der Dryolestoiden-Molaren bedingt. Im Gegensatz dazu haben die tribosphenischen Molaren von Lipotyphla und Didelphimorphia einen deutlich dickeren Schmelz und zeigen nicht diese Form der Abrasion entlang der funktionellen Scherkanten. Die Striationen auf den Scherflächen der Dryolestoiden-Molaren weisen zwei Hauptrichtungen auf. Steilere Striationen, die linguo-buccal orientiert sind, finden sich auf Facette 1 unterhalb des Protocristids. Ebenfalls auf Facette 1, oberhalb des Hypoflexids, kommen zusätzlich weniger steile Striationen mit der gleichen Orientierung vor. Der Richtungsunterschied dieser Striationen von etwa 10° spiegelt die Führungs-Funktion des Hypoflexids wider, in dessen Rinne der Paracon des oberen Molaren entlang geführt wird. Facette 3 im Hypoflexid wird im Laufe der Abnutzung steiler, während Facetten 1 und 2 auf der mesialen und distalen Flanke des Trigonids infolge der Einebnung der Haupthöcker abflachen. Im Kauvorgang hat das Hypoflexid hauptsächlich scherende Funktion mit einer quetschenden Komponente. Diese ist auf die geringere Neigung dieser Fläche zurückzuführen, verglichen mit den steileren Flächen der Flanken des Trigonids unterhalb von Protocristid und Paracristid. Striationen auf den freigelegten Dentinfeldern entlang des Paracristids sowie auf Facette 3 in der Rinne des Hypoflexids zeigen an, dass diese Flächen durch Attrition entstanden sind (Zahn-Zahn-Kontakt). Dagegen erscheint das freigelegte Dentin an den Zahnspitzen und entlang des Protocristids am Übergang zum Schmelz ausgekolkt und ohne Striationen, was auf eine Entstehung durch Abrasion hinweist (Zahn-Nahrungs-Kontakt).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Butler, P.M. 1939. The teeth of the Jurassic mammals. Proceedings of the Zoological Society B 109: 329–356.

    Google Scholar 

  • Cifelli, R.L., and S.K. Madsen. 1999. Spalacotheriid symmetrodonts (Mammalia) from the medial Cretaceous (Upper Albian or lower Cenomanian) Mussentuchit local fauna, Cedar Mountain Formation, Utah, USA. Geodiversitas 21: 167–214.

    Google Scholar 

  • Costa, R., and W.S. Greaves. 1981. Experimentally produced tooth wear and the direction of jaw motion. Journal of Paleontology 55: 635–638.

    Google Scholar 

  • Crompton, A.W. 1971. The origin of the tribosphenic molar. In Early Mammals, eds. D.M. Kermack and K.A. Kermack. Zoological Journal of the Linnean Society 50: 65–87.

  • Crompton, A.W., and A. Sita-Lumsden. 1970. Functional significance of the Therian molar pattern. Nature 227: 197–199.

    Article  Google Scholar 

  • Crompton, A.W., C.B. Wood, and D.N. Stern. 1994. Differential wear of enamel: a mechanism for maintaining sharp cutting edges. In Advances in comparative and environmental physiology 18: Biomechanics of feeding in vertebrates, ed. V.L. Bels, M. Chardon, and P. Vandewalle, 321–346. Berlin: Springer.

    Google Scholar 

  • Ensom, P.C., and D. Sigogneau-Russell. 1998. New Dryolestoid mammals from the basal Cretaceous Purbeck Limestone Group of Southern England. Palaeontology 41: 35–55.

    Google Scholar 

  • Fox, R.C. 1985. Upper molar structure in the Late Cretaceous symmetrodont Symmetrodontoides Fox, and a classification of the Symmetrodonta. Journal of Paleontology 59: 21–26.

    Google Scholar 

  • Freeman, E.F. 1979. A middle Jurassic mammal bed from Oxfordshire. Palaeontology 22: 135–166.

    Google Scholar 

  • Gelfo, J.N., and R. Pascual. 2001. Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23: 369–379.

    Google Scholar 

  • Gordon, K.R. 1984. Microfracture patterns of abrasive wear striations on teeth indicate directionality. American Journal of Physical Anthropology 63: 315–322.

    Article  Google Scholar 

  • Greaves, W.S. 1973. The inference of jaw motion from tooth wear facets. Journal of Paleontology 47: 1000–1001.

    Google Scholar 

  • Grippo, J.O., M. Simring, and S. Schreiner. 2004. Attrition, abrasion, corrosion and abfraction revisited: A new perspective on tooth surface lesions. Journal of the American Dental Association 135: 1109–1118.

    Google Scholar 

  • Ji, Q., Z.-X. Luo, X. Zhang, C.-X. Yuan, and L. Xu. 2009. Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281.

    Article  Google Scholar 

  • Kielan-Jaworowska, Z., R.L. Cifelli, and Z.-X. Luo. 2004. Mammals from the age of dinosaurs: Origins, evolution and structure. New York: Columbia University Press.

    Google Scholar 

  • Krebs, B. 1971. Evolution of the mandible and lower dentiton in dryolestids (Pantotheria, Mammalia). In Early Mammals, eds. D.M. Kermack and K.A. Kermack. Zoological Journal of the Linnean Society 50: 89–103.

  • Krebs, B. 1991. Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner geowissenschaftliche Abhandlungen A 133: 1–110.

    Google Scholar 

  • Li, G., and Z.-X. Luo. 2006. A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439: 195–200.

    Article  Google Scholar 

  • Lillegraven, J.A., and M.C. McKenna. 1986. Fossil mammals from the “Mesaverde” formation (Late Cretaceous, Judithian) of the Bighorn and Wind River basins, Wyoming, with definitions of Late Cretaceous North American land mammal “ages”. American Museum Novitates 2840: 1–68.

    Google Scholar 

  • Luo, Z.-X., Z. Kielan-Jaworowska, and R. L. Cifelli. 2002. In quest for a phylogeny of Mesozoic mammals. Acta Palaeontologica Polonica 47(1): 1–78.

    Google Scholar 

  • Mair, L.H., T.A. Stolarski, R.W. Vowles, and C.H. Lloyds. 1996. Wear: mechanisms, manifestations and measurement. Report of a workshop. Journal of Dentistry 24: 141–148.

    Article  Google Scholar 

  • Marsh, O.C. 1879. Notice of a new Jurassic mammal. American Journal of Science 18: 1–2.

    Google Scholar 

  • Marsh, O.C. 1887. American Jurassic mammals. American Journal of Science 33: 327–347.

    Google Scholar 

  • Martin, T. 1997. Tooth replacement in Late Jurassic Dryolestidae (Eupantotheria, Mammalia). Journal of Mammalian Evolution 4: 1–18.

    Article  Google Scholar 

  • Martin, T. 1999. Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abhandlungen der senckenbergischen naturforschenden Gesellschaft 550: 1–119.

    Google Scholar 

  • Martin, T., and B. Krebs. 2000. Guimarota: A Jurassic Ecosystem. 155 pp. Verlag Dr. Friedrich Pfeil: München.

  • Martin, T., and A.O. Averianov. 2010. Mammals from the Middle Jurassic Balabansai Formation of the Fergana Depression, Kyrgyzstan. Journal of Vertebrate Paleontology 30: 855–871.

    Article  Google Scholar 

  • Prothero, D.R. 1981. New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bulletin of the American Museum of Natural History 167: 277–326.

    Google Scholar 

  • Queiroz, A.I., A. Bertrand, and G. Khakhin. 1996. Status and conservation of Desmaninae in Europe. Nature and Environment 76: 1–79.

    Google Scholar 

  • Rensberger, J.M. 1973. An occlusion model for mastication and dental wear in herbivorous mammals. Journal of Paleontology 47: 515–528.

    Google Scholar 

  • Sajewicz, E. 2006. On evaluation of wear resistance of tooth enamel and dental materials. Wear 260: 1256–1261.

    Article  Google Scholar 

  • Sigogneau-Russell, D. 2003. Holotherian mammals from the Forest Marble (Middle Jurassic of England). Geodiversitas 25: 501–537.

    Google Scholar 

  • Simpson, G.G. 1928. A catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum (Natural History), I-X. London: British Museum.

    Google Scholar 

  • Simpson, G.G. 1929. American Mesozoic mammals. Memoires of the Peabody Museum 3: 1–235.

    Google Scholar 

  • Tafforeau, P., R. Boistel, E. Boller, A. Bravin, M. Brunet, Y. Chaimanee, M. Feist, et al. 2006. Applications of X-ray synchrotron microtomography for non-destructive 3D studies of paleontological specimen. Applied Physics A 83: 195–202.

    Article  Google Scholar 

  • Tsubamoto, T., G.W. Rougier, S. Isaji, M. Manabe, and A.M. Forasiepi. 2004. New Early Cretaceous spalacotheriid “symmetrodont” mammal from Japan. Acta Palaeontologica Polonica 49: 329–346.

    Google Scholar 

  • Ulhaas, L., O. Kullmer, F. Schrenk, and W. Henke. 2004. A new 3D approach to determine functional morphology of cercopithecoid molars. Annals of Anatomy 186: 487–493.

    Article  Google Scholar 

  • Ungar, P., and F. M’Kirera. 2003. A solution to the worn tooth conundrum in primate functional anatomy. Proceedings of the National Academy of Science 100: 3874–3877.

    Article  Google Scholar 

  • Zheng, J., Z.R. Zhou, J. Zhang, H. Li, and H.Y. Yu. 2003. On the friction and wear behavior of human tooth enamel and dentin. Wear 255: 967–974.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the two reviewers Zhe-Xi Luo (Carnegie Museum of Natural History) and Guillermo Rougier (University of Louisville) for their constructive comments that greatly improved this paper. The dryolestoid material was collected during field operations under the supervision of Siegfried Henkel and Bernard Krebs of the Freie Universität Berlin. Fieldwork in Portugal was generously supported by the Serviços Geológicos de Portugal (Lisbon). We thank the former director of this institution, Senhor Fernando Moitinho de Almeida, and his successor, Prof. Dr. Miguel Ramalho, for their long-term goodwill. We thank Paul Tafforeau and technical staff on beamline ID 19 at the European Radiation Facility (ESRF) in Grenoble for their help and support with scanning the specimens with grant funding of the ESRF (EC-440). Vincent Lazzari (Université de Poitiers) is acknowledged for his support during the long scan sessions at the ESRF and discussions on synchrotron data processing. Reinhard Ziegler (Staatliches Museum für Naturkunde, Stuttgart) provided the Soricella and Amphiperatherium specimens, Alexander O. Averianov (Zoological Institute, Russian Academy of Sciences, RAS) loaned the Desmana specimens and Pavel P. Skutschas (RAS) hand-carried them to the Steinmann-Institute. We thank Sandra Engels for reading the manuscript and her helpful suggestions. The project was funded by the Deutsche Forschungsgemeinschaft (MA 1643/14). This is publication no. 20 of the DFG Research Unit 771 “Function and performance enhancement in the mammalian dentition—phylogenetic and ontogenetic impact on the masticatory apparatus.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Schultz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultz, J.A., Martin, T. Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontol Z 85, 269–285 (2011). https://doi.org/10.1007/s12542-010-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-010-0091-8

Keywords

Schlüsselwörter

Navigation