Skip to main content

Advertisement

Log in

Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany

  • Research Paper
  • Published:
Paläontologische Zeitschrift Aims and scope Submit manuscript

Abstract

The carbon, oxygen, and strontium isotope composition of enamel from teeth of large Miocene herbivorous mammals from Sandelzhausen (MN5, late Early/early Middle Miocene) in the North Alpine foreland basin, were analyzed to infer diet and habitat. The mean enamel δ13C value of −11.4 ± 1.0‰ (n = 53) for the nine taxa analyzed (including proboscideans, cervids, suids, chalicotheres, equids, rhinocerotids) indicates a pure C3 plant diet for all mammals. 87Sr/86Sr ratios of ~0.710 higher than those from teeth of the western Molasse Basin (0.708–0.709) seem to indicate preferential feeding of the mammals in the northeastern Molasse Basin. The sympatric herbivores have different mean δ13C and δ18O values which support diet partitioning and/or use of different habitats within a C3 plant ecosystem. Especially the three sympatric rhinoceroses Plesiaceratherium fahlbuschi, Lartetotherium sansaniense, and Prosantorhinus germanicus show clear partitioning of plants and/or habitats. The palaeomerycid Germanomeryx fahlbuschi was a canopy folivore in moderately closed environments whereas Metaschizotherium bavaricum (Chalicotheriidae) and P. germanicus (Rhinocerotidae) were browsers in more closed forest environments. The horse Anchitherium aurelianense was probably a more generalized feeder than assumed from its dental morphology. The forest hog Hyotherium soemmeringi has the highest δ13C and lowest δ18O value of all analyzed taxa, possibly related to a frugivorous diet. Most taxa were water-dependent browsers that record meteoric water δ18O values of about −5.6 ± 0.7‰ Vienna Standard Mean Ocean Water (VSMOW). Using a modern-day mean annual air temperature (MAT)–\( \delta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \) relation a MAT of 19.3 ± 1.5°C can be reconstructed for Sandelzhausen. A Gomphotherium subtapiroideum tusk serially sampled for δ18O values does not record a clear pattern of seasonality. Thus most taxa were C3 browsers in a forested and humid floodplain environment in the Molasse Basin, which experienced a warm-temperate to subtropical climate and possibly low seasonality.

Kurzfassung

Die Kohlenstoff-, Sauerstoff- und Strontium-Isotopenzusammensetzung von Zahnschmelzproben miozäner herbivorer Großsäuger aus Sandelzhausen (MN5, Unter-/Mittelmiozän) im nördlichen Alpenvorlandbecken wurde analysiert, um die Ernährungsweise und den Lebensraum zu rekonstruieren. Der mittlere Zahnschmelz δ13C-Wert von −11,4 ± 1,0‰ (n = 53) für die 9 analysierten Taxa (u.a. Rüsseltiere, Hirsche, Schweine, Klauentiere, Pferde, Nashörner) zeigt, dass alle Säugetiere eine ausschließlich C3-Pflanzen basierte Ernährungsweise hatten. Die 87Sr/86Sr-Verhältnisse von ~0,710, die höher sind als von Zähne aus dem westlichen Molasse Becken (0,707–0,709), deuten auf eine bevorzugte Nahrungsaufnahme im Bereich des nordöstlichen Molasse Beckens hin. Die zeitgleich vorkommenden Herbivoren haben unterschiedliche δ13C- und δ18O-Werte, welche auf die Nutzung unterschiedlicher Nahrungsressourcen und/oder Lebensräume innerhalb eines C3-Ökosystems hindeuten. Insbesondere die drei Nashörner Plesiaceratherium fahlbuschi, Lartetotherium sansaniense und Prosantorhinus germanicus zeigen die Nutzung verschiedener Nahrungspflanzen und/oder Habitate. Der Palaeomerycide Germanomeryx fahlbuschi war ein Unterholz-Blattfresser in weniger geschlossenen Habitaten während Metaschizotherium bavaricum (Chalicotheriidae) und Prosantorhinus germanicus (Rhinocerotidae) Laubfresser in eher geschlossenen Wäldern waren. Das Pferd Anchitherium aurelianense war vermutlich ein mehr generalistischer Pflanzenfresser als aufgrund seiner Zahnmorphologie bisher angenommen. Das Waldschwein Hyotherium soemmeringi hat die höchsten δ13C und niedrigsten δ18O-Werte aller analysierten Taxa, was möglicherweise auf eine frugivore Ernährungsweise hindeutet. Die meisten Taxa waren wasserabhängige Blattfresser, die δ18O-Werte des meteorischen Wassers von −5,6 ± 0,7‰ VSMOW aufgezeichnet haben. Unter Nutzung einer modernen mittleren Jahrestemperatur (MAT)-\( \delta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \)-Relation kann eine MAT von 19,3 ± 1,5°C für Sandelzhausen rekonstruiert werden. Ein seriell für δ18O-Werte beprobter Gomphotherium subtapiroideum Stoßzahn zeigt kein klares Saisonalitätsmuster. Daher waren die meisten Taxa C3-Blattfresser in einer bewaldeten, feuchten Überflutungsebene im Molasse Becken mit einem warmtemperierten bis subtropischen Klima möglicherweise ohne stark ausgeprägte Saisonalität.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdul-Aziz, H., M. Böhme, A. Rocholl, A. Zwing, J. Prieto, J. Wijbrans, R.K. Heissig, and V. Bachtadse. 2008. Integrated stratigraphy and 40Ar/39Ar chronology of the Early to Middle Miocene Upper Freshwater Molasse in eastern Bavaria (Germany). International Journal of Earth Sciences 97:115–134.

    Google Scholar 

  • Ayliffe, L.K., and A.R. Chivas. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: Potential as a paleoenvironmental recorder. Geochimica et Cosmochimica Acta 54:2603–2609.

    Google Scholar 

  • Ayliffe, L.K., A.M. Lister, and A.R. Chivas. 1992. The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology 99:179–191.

    Google Scholar 

  • Bentley, R.A. 2006. Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory 13:135–187.

    Google Scholar 

  • Blondel, C., H. Bocherens, and A. Mariotti. 1997. Stable carbon and oxygen isotope ratios in ungulate teeth from French Eocene and Oligocene localities. Bulletin de la Société Géologique de France 168:775–781.

    Google Scholar 

  • Blum, J.D., E.H. Taliaferro, M.T. Weisse, and R.T. Holmes. 2000. Changes in Sr/Ca, Ba/Ca and 87Sr/86Sr ratios between two forest ecosystems in the northeastern U.S.A. Biogeochemistry 49:87–101.

    Google Scholar 

  • Bocherens, H. 2000. Preservation of isotopic signals (13C, 15N) in Pleistocene mammals. In Biogeochemical approaches to paleodietary analyses, eds. M.A. Katzenberg, and S.H. Ambrose, 65–88. New York: Kluwer/Plenum.

    Google Scholar 

  • Bocherens, H. 2003. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. In Advances in mammoth research (Proceedings of the second international mammoth conference, Rotterdam, 16–20 May 1999), eds. J.W.F. Reumer, J. De Vos, and D. Mol. Deinsea 9:57–76.

  • Bocherens, H., P.L. Koch, A. Mariotti, D. Geraads, and J.J. Jaeger. 1996. Isotopic biogeochemistry (13C, 18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11:306–318.

    Google Scholar 

  • Böhme, M. 2003. The Miocene climatic optimum: Evidence from ectothermic vertebrates of Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 195:389–401.

    Google Scholar 

  • Böhme, M. 2009. Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implication for environment reconstruction and palaeoclimate. Paläontologische Zeitschrift (in press).

  • Böhme, M., A. Ilg, A. Ossig, and H. Küchenhoff. 2006. New method to estimate palaeoprecipitation using fossil amphibians and reptiles and the middle and late Miocene precipitation gradients in Europe. Geology 34:425–428.

    Google Scholar 

  • Böhme, M., A. Bruch, and A. Selmeier. 2007. The reconstruction of the Early and Middle Miocene climate and vegetation in the North Alpine Foreland Basin as determined from the fossil wood flora. Palaeogeography, Palaeoclimatology, Palaeoecology 253:91–114.

    Google Scholar 

  • Bryant, J.D., and P.N. Froelich. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 60:4523–4537.

    Google Scholar 

  • Bryant, J.D., B. Luz, and P.N. Froelich. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303–316.

    Google Scholar 

  • Bryant, J.D., P.L. Koch, P.N. Froelich, W. Showers, and B.J. Genna. 1996. Oxygen isotope partitioning between phosphate and carbonate in mammalian apatite. Geochimica et Cosmochimica Acta 60:5145–5148.

    Google Scholar 

  • Cerling, T.E., and J.M. Harris. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347–363.

    Google Scholar 

  • Cerling, T.E., Y. Wang, and J. Quade. 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the Late Miocene. Nature 361:344–345.

    Google Scholar 

  • Cerling, T.E., J.M. Harris, S.H. Ambrose, M.G. Leakey, and N. Solounias. 1997a. Dietary and environmental reconstruction with stable isotope analyses of herbivore tooth enamel from the Miocene locality of Fort Ternan, Kenya. Journal of Human Evolution 33:635–650.

    Google Scholar 

  • Cerling, T.E., J.M. Harris, B.J. MacFadden, M.G. Leakey, J. Quade, V. Eisenmann, and J.R. Ehleringer. 1997b. Global vegetation change through the Miocene–Pliocene boundary. Nature 389:153–158.

    Google Scholar 

  • Cerling, T.E., J.M. Harris, and B.H. Passey. 2003a. Diets of East African Bovidae based on stable isotope analysis. Journal of Mammalogy 84:456–470.

    Google Scholar 

  • Cerling, T.E., J.M. Harris, and M.G. Leakey. 2003b. Isotope paleoecology of the Nawata and Nachukui Formations at Lothagam, Turkana Basin, Kenya. In Lothagam. The Dawn of Humanity in Eastern Africa, eds. J.M. Harris, and M.G. Leakey, 587–597. New York: Columbia University Press.

    Google Scholar 

  • Cerling, T.E., J.A. Hart, and T.B. Hart. 2004. Stable isotope ecology in the Ituri Forest. Oecologia 138:5–12.

    Google Scholar 

  • Clementz, M.T., and P.L. Koch. 2001. Differentiating aquatic mammal habitat and foraging ecology with stable isotopes in tooth enamel. Oecologia 129:461–472.

    Google Scholar 

  • Coombs, M.C. 2009. The chalicothere Metaschizotherium bavaricum (Perissodactyla, Chalicotheriidae, Schizotheriinae) from the Miocene (MN5) Lagerstätte of Sandelzhausen (Germany): Description, comparison, and paleoecological significance. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift 83(1).

  • Coplen, T.B. 1994. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Pure and Applied Chemistry 66:273–276.

    Google Scholar 

  • Crepet, W.L., and G.D. Feldman. 1991. The earliest remains of grasses in the fossil record. American Journal of Botany 78:1010–1014.

    Google Scholar 

  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436–468.

    Google Scholar 

  • Deines, P. 1980. The isotopic composition of reduced organic carbon. In Handbook of environmental geochemistry, vol. 1, eds. P. Fritz, and Ch. Fontes, 239–406. New York: Elsevier.

    Google Scholar 

  • DeNiro, M.J., and S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495–506.

    Google Scholar 

  • Dettmann, D.L., M. Kohn, J. Quade, F.J. Reyerson, T.P. Ojah, and S. Hamidullah. 2001. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 Ma. Geology 29:31–34.

    Google Scholar 

  • Dongmann, G., H.W. Nürnberg, H. Förstel, and K. Wagener. 1974. On the enrichment of H 182 O in the leaves of transpiring plants. Radiation and Environmental Biophysics 11:41–52.

    Google Scholar 

  • Driessens, F.C.M., and R.M.H. Verbeeck. 1990. Biominerals, 440. Boca Raton: CRC.

    Google Scholar 

  • Drucker, D., H. Bocherens, A. Bridault, and D. Billiou. 2003. Carbon and nitrogen isotopic composition of Red Deer (Cervus elaphus) collagen as a tool for tracking palaeoenvironmental change during Lateglacial and Early Holocene in northern Jura (France). Palaeogeography, Palaeoclimatology, Palaeoecology 195:375–388.

    Google Scholar 

  • Drucker, D.G., A. Bridault, K.A. Hobson, E. Szuma, and H. Bocherens. 2008. Can carbon-13 abundances in large herbivores track canopy effect in temperate and boreal ecosystems? Evidence from modern and ancient ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 266:69–82.

    Google Scholar 

  • Ehleringer, J.R., and R.K. Monson. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24:411–439.

    Google Scholar 

  • Ehleringer, J.R., C.B. Field, Z.F. Lin, and C.Y. Kuo. 1986. Leaf carbon isotope and mineral-composition in subtropical plants along an irradiance cline. Oecologia 70:520–526.

    Google Scholar 

  • Ehleringer, J.R., Z.F. Lin, C.B. Field, G.C. Sun, and C.Y. Kuo. 1987. Leaf carbon isotope ratios of plants from a subtropical monsoon forest. Oecologia 72:109–114.

    Google Scholar 

  • Epstein, S., P. Thompson, and C.J. Yapp. 1977. Oxygen and hydrogen isotopic ratios in plant cellulose. Science 198:1209–1215.

    Google Scholar 

  • Fahlbusch, V. 2003. Die miozäne Fossil-Lagerstätte Sandelzhausen. Die Ausgrabungen 1994–2001. Zitteliana A 43:109–122.

    Google Scholar 

  • Fahlbusch, V., and R. Liebreich. 1996. Hasenhirsch und Hundebär. Chronik der tertiären Fossilfundstätte Sandelzhausen bei Mainburg, 40. München: Verlag Pfeil.

    Google Scholar 

  • Fahlbusch, V., H. Gall, and N. Schmidt-Kittler. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilinhalt—Probleme der Genese und Ökologie. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1972:331–343.

    Google Scholar 

  • Fahlbusch, V., H. Gall, and N. Schmidt-Kittler. 1974. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 10. Die Grabungen 1970–1973 Beiträge zur Sedimentologie und Fauna. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 14:103–128.

    Google Scholar 

  • Farquhar, G.D., J.R. Ehleringer, and K.T. Hubrick. 1989. Carbon isotope fractionation and photosynthesis. Annual Reviews of Plant Physiology and Molecular Biology 44:503–537.

    Google Scholar 

  • Feranec, R.S. 2007. Stable carbon isotope values reveal evidence of resource partitioning among ungulates from modern C3-dominated ecosystems in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 252:575–585.

    Google Scholar 

  • Feranec, R.S., and B.J. MacFadden. 2006. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32:190–205.

    Google Scholar 

  • Fox, D.L. 2000. Growth increments in Gomphotherium tusks and implications for late Miocene climate change in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 156:327–348.

    Google Scholar 

  • Fox, D.L., and D.C. Fisher. 2001. Stable isotope ecology of a Late Miocene population of Gomphotherium productus (Mammalia, proboscidea) from Port of Entry Pit, Oklahoma, USA. Palaios 16:279–293.

    Google Scholar 

  • Fox, D.L., and D.C. Fisher. 2004. Dietary reconstruction of Gomphotherium (Mammalia, Proboscidea) based on carbon isotope composition of tusk enamel. Palaeogeography, Palaeoclimatology, Palaeoecology 206:311–335.

    Google Scholar 

  • Fricke, H.C., and J.R. O’Neil. 1996. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate; implications for paleoclimatological and paleobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology 126:91–99.

    Google Scholar 

  • Fricke, H.C., W.C. Clyde, and J.R. O′Neil. 1998. Intra-tooth variations in δ18O(PO4) of mammalian tooth enamel as a record of seasonal variations in continental climate variables. Geochimica et Cosmochimica Acta 62:1839–1850.

    Google Scholar 

  • Friedli, H., H. Lotscher, H. Oeschger, U. Siegenthaler, and B. Stauver. 1986. Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238.

    Google Scholar 

  • Göhlich, U.B. 2002. The avifauna of the Miocene Fossillagerstätte Sandelzhausen (Upper Freshwater Molasse, Southern Germany). Zitteliana. Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie 22:169–190.

    Google Scholar 

  • Göhlich, U.B. 2009. The Miocene proboscidean fauna (mammalia) from Sandelzhausen, southern Germany. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift (in press).

  • Gregor, H.J. 1982. Zur Ökologie der jungtertiären Säugetier-Fundstelle Sandelzhausen. Documenta Naturae 4:19–26.

    Google Scholar 

  • Harris, J.M., and T.E. Cerling. 2002. Dietary adaptations of extant and Neogene African suids. Journal of Zoology 256:45–54.

    Google Scholar 

  • Heaton, T.H.E. 1999. Spatial, species, and temporal variations in the 13C/12C ratios of C3 plants: Implications for paleodiet studies. Journal of Archaeological Science 26:637–649.

    Google Scholar 

  • Heissig, K. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 5. Rhinocerotidae (Mammalia), Systematik und Ökologie. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie 12:57–81.

    Google Scholar 

  • Heissig, K. 1997. Mammal faunas intermediate between the reference faunas of MN 4 and MN 6 from the Upper Freshwater Molasse of Bavaria. In Actes du Congrès BiochroM’97, vol. 21, eds. J.-P. Aguilar, S. Legendre, and J. Michaux, 537–546. Mémoires et Travaux de l’Ecole Pratique des Hautes Études, Institut de Montpellier.

  • Heissig, K. 1999. Family Chalicotheriidae. In The Miocene Land Mammals of Europe, eds. G.E. Rössner, and K. Heissig, 189–292. München: Verlag Pfeil.

    Google Scholar 

  • Hoppe, K.A., P.L. Koch, R.W. Carlson, and S.D. Webb. 1999. Tracking mammoths and mastodons: Reconstruction of migratory behavior using strontium isotope ratios. Geology 27:439–442.

    Google Scholar 

  • Huertas, A.D., P. Iacumin, B. Stenni, B.S. Chillon, and A. Longinelli. 1995. Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochimica et Cosmochimica Acta 59:4299–4305.

    Google Scholar 

  • Iacumin, P., H. Bocherens, A. Mariotti, and A. Longinelli. 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: A way to monitor diagenetic alteration of bone phosphate. Earth and Planetary Science Letters 142:1–6.

    Google Scholar 

  • Jacobs, B.F., J.D. Kingston, and L.L. Jacobs. 1999. The origin of grassdominated ecosystems. Annals of the Missouri Botanical Garden 86:590–643.

    Google Scholar 

  • Jechorek, H., and J. Kovar-Eder. 2004. Vegetational characteristics in Europe around the Late Early to Early Middle Miocene based on the plant macro record. In The Middle Miocene Environments and Ecosystem Dynamics of the Eurasian Neogene (EEDEN), vol. 249, eds. F.F. Steininger, J. Kovar-Eder, and M. Fortelius, 53–62. Courier Forschungsinstitut Senckenberg.

  • Kaiser, T. 2009. Anchitherium aurelianense (Equidae, Mammalia)—a brachydont “dirty browser” in the community of herbivorous large mammals from Sandelzhausen (lowest Middle Miocene, Germany). In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift 83(1).

  • Kaiser, T.M., and G.E. Rössner. 2007. Dietary resource partitioning in ruminant communities of Miocene wetland and karst palaeoenvironments in southern Germany. Palaeogeography, Palaeoclimatology, Palaeoecology 252:424–439.

    Google Scholar 

  • Kingdon, J. 1997. The Kingdon field guide to African mammals, 450. London: Academic.

    Google Scholar 

  • Koch, P.L. 2007. Isotopic study of the biology of modern and fossil vertebrates. In Stable isotopes in ecology and envrionmental science, 2nd edn, eds. R. Michener, and K. Lajtha, 99–154. Oxford: Blackwell.

    Google Scholar 

  • Koch, P.L., D.C. Fisher, and D.L. Dettman. 1989. Oxygen isotopic variation in the tusks of extinct proboscideans; a measure of season of death and seasonality. Geology 17:515–519.

    Google Scholar 

  • Koch, P.L., N. Tuross, and M.L. Fogel. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417–429.

    Google Scholar 

  • Köhler, M. 1993. Skeleton and Habitat of recent and fossil Ruminants. Münchner Geowissenschaftliche Abhandlungen A 25:1–88.

    Google Scholar 

  • Kohn, M.J. 1996. Predicting animal δ18O: Accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:4811–4829.

    Google Scholar 

  • Kohn, M.J., and T.E. Cerling. 2002. Stable isotope compositions of biological apatite. In Phosphates. Geochemical, geobiological, and materials importance, eds. M.J. Kohn, J. Rakovan, and J.M. Hughes. Reviews in Mineralogy and Geochemistry 48:455–488.

  • Kohn, M.J. 2004. Comment: Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time-series, by B.H. Passey and T.E. Cerling 2002. Geochimica et Cosmochimica Acta 68:403–405.

    Google Scholar 

  • Kohn, M.J., M.J. Schoeninger, and J.W. Valley. 1996. Herbivore tooth oxygen isotope compositions: Effects of diet and physiology. Geochimica et Cosmochimica Acta 60:3889–3896.

    Google Scholar 

  • Kohn, M.J., M.J. Schoeninger, and J.W. Valley. 1998. Variability in herbivore tooth oxygen isotope compositions: Reflections of seasonality or developmental physiology? Chemical Geology 152:97–112.

    Google Scholar 

  • Kohn, M.J., M.J. Schoeninger, and W.B. Barker. 1999. Altered states: Effects of diagenesis on fossil tooth chemistry. Geochimica et Cosmochimica Acta 63:2737–2747.

    Google Scholar 

  • Kohn, M.J., M.P. McKay, and J.L. Knight. 2005. Dining in the Pleistocene—Who’s on the menu? Geology 33:649–652.

    Google Scholar 

  • Lee-Thorp, J.A., and M. Sponheimer. 2005. Opportunities and constraints for reconstructing palaeoenvironments from stable light isotope ratios in fossils. Geological Quarterly 49:195–204.

    Google Scholar 

  • Lee-Thorp, J.A., and N.J. van der Merwe. 1987. Carbon isotope analysis of fossil bone apatite. South African Journal of Science 83:712–715.

    Google Scholar 

  • Levin, N.E., T.E. Cerling, B.H. Passey, J.M. Harris, and J.R. Ehleringer. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Sciences 103:11201–11205.

    Google Scholar 

  • Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: A new tool for palaeoclimatological and palaeoenvironmental research? Geochimica et Cosmochimica Acta 48:385–390.

    Google Scholar 

  • MacFadden, B.J. 2001. Three-toed browsing horse Anchitherium clarencei from the early Miocene (Hemingfordian) Thomas Farm, Florida. Bulletin of the Florida Museum of Natural History 43:79–109.

    Google Scholar 

  • MacFadden, B.J., and P. Higgins. 2004. Ancient ecology of 15-million-year-old browsing mammals within C3 plant communities from Panama. Oecologia 140:169–182.

    Google Scholar 

  • MacFadden, B.J., N. Solounias, and T.E. Cerling. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283:824–827.

    Google Scholar 

  • Moser, M., H.-J. Niederhöfer, and G. Falkner. 2009a. Continental molluscs of the fossil site Sandelzhausen (Middle Miocene; Upper Freshwater Molasse from Bavaria) and their value for palaeoecological assessment. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift 83(1).

  • Moser, M., G.E. Rössner, U.B. Göhlich, M. Böhme, and V. Fahlbusch. 2009b. The fossil lagerstätte Sandelzhausen (Miocene; southern Germany): history of investigation, geology, fauna and age. InFossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift 83(1).

  • Nelson, S.V. 2005. Paleoseasonality inferred from equid teeth and intratooth isotopic variability. Palaeogeography, Palaeoclimatology, Palaeoecology 222:122–144.

    Google Scholar 

  • Nelson, S.V. 2007. Isotopic reconstructions of habitat change surrounding the extinction of Silvapithecus, a Miocene hominoid, in the Siwalik Group of Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology 243:204–222.

    Google Scholar 

  • O’Leary, M.H. 1988. Carbon isotopes in photosynthesis. Bioscience 38:328–336.

    Google Scholar 

  • Passey, B., and T.E. Cerling. 2002. Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta 66:3225–3234.

    Google Scholar 

  • Passey, B.H., T.E. Cerling, M.E. Perkins, M.R. Voorhies, J.M. Harris, and S.T. Tucker. 2002. Environmental change in the great plains: An isotopic record from fossil horses. The Journal of Geology 110:123–140.

    Google Scholar 

  • Passey, B.J., T.F. Robinson, L.K. Ayliffe, T.E. Cerling, M. Sponheimer, M.D. Dearing, B.L. Roeder, and J.R. Ehleringer. 2005. Carbon isotope fractionation between diet, breath CO2, and bioapatite in different mammals. Journal of Archaeological Science 32:1459–1470.

    Google Scholar 

  • Peter, K. 2002. Odontologie der Nashornverwandten (Rhinocerotidae) aus dem Miozän (MN 5) von Sandelzhausen (Bayern). Zitteliana. Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Geologie 22:3–168.

    Google Scholar 

  • Quade, J., T.E. Cerling, J.C. Barry, M.E. Morgan, D.R. Pilbeam, A.R. Chivas, J.A. Lee-Thorp, and N.J. van der Merwe. 1992. A 16-Ma record of paleodiet using carbon and oxygen isotopes in fossil teeth from Pakistan. Chemical Geology 94:183–192.

    Article  Google Scholar 

  • Quade, J., T.E. Cerling, P. Andrews, and B. Alpagut. 1995. Paleodietary reconstruction of Miocene faunas from Pasalar, Turkey using stable carbon and oxygen isotopes of fossil tooth enamel. Journal of Human Evolution 28:373–384.

    Google Scholar 

  • Rössner, G.E. 2004. Community structure and regional patterns in late Early to Middle Miocene Ruminantia of Central Europe. In The Middle Miocene environments and ecosystem dynamics of the Eurasian neogene (EEDEN), vol. 249, eds. F.F. Steininger, J. Kovar-Eder, and M. Fortelius, 91–100. Courier Forschungs-Institut Senckenberg.

  • Rössner, G.E. 2009. Systematics and palaeoecology of the ruminant (Artiodactyla, Mammalia) community from Sandelzhausen (Early/Middle Miocene boundary) in the German Molasse Basin. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift (in press).

  • Rozanski, K., L. Araguás-Araguás, and R. Gonfiantini. 1993. Isotopic patterns in modern global precipitaion. In Climate Change in continental isotopic records, eds. P.K. Swart, K.C. Lohmann, J. McKenzie, and S. Savin. Geophysical Monograph 78:1–36.

  • Schmid, W. 2002. Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der Oberen Süßwassermolasse Bayerns. Abhandlungen der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Neue Folge 172:207.

    Google Scholar 

  • Schmidt-Kittler, N. 1972. Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 6. Proboscidea (Mammalia). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 12:83–95.

    Google Scholar 

  • Schoeninger, M.J., and M.J. DeNiro. 1982. Carbon isotope ratios of apatite from fossil bone cannot be used to reconstruct diets of animals. Nature 297:557–578.

    Google Scholar 

  • Schulz, E., and J.M. Fahlke. 2009. The diet of Metaschizotherium bavaricum (Chalicotheriidae, Mammalia) from the MN5 of Sandelzhausen (Germany) implied by the mesowear method. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner and U.B. Göhlich. Paläontologische Zeitschrift 83(1).

  • Schulz, E., J.M. Fahlke, G. Merceron, and T. Kaiser. 2007. Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins Hamburg 43:5–31.

    Google Scholar 

  • Schweigert, G. 1992. Die untermiozäne Flora (Karpatium, MN5) des Süßwasserkalkes von Engelswies bei Meßkirch (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde, Serie B 188:1–55.

    Google Scholar 

  • Sharp, Z.D., and T.E. Cerling. 1998. Fossil isotope records of seasonal climate and ecology: Straight from the horse′s mouth. Geology 26:219–222.

    Google Scholar 

  • Sponheimer, M., and J.A. Lee-Thorp. 1999a. Isotopic evidence for the diet of an early hominid, Australopithecus africanus. Science 283:368–370.

    Google Scholar 

  • Sponheimer, M., and J.A. Lee-Thorp. 1999b. Oxygen isotope in enamel carbonate and their ecological significance. Journal of Archaeological Science 26:723–728.

    Google Scholar 

  • Spötl, C., and T.W. Vennemann. 2003. Continuous-flow IRMS analysis of carbonate minerals. Rapid Communications in Mass Spectrometry 17:1004–1006.

    Google Scholar 

  • Sternberg, L.S.L. 1989. Oxygen and hydrogen isotope ratios in plant cellulose: Mechanisms and applications. In Stable isotopes in ecological research, eds. P.W. Rundel, J.R. Ehleringer, and K.A. Nagy, 124–143. New York: Springer.

    Google Scholar 

  • Tidwell, W.D., and E.M.V. Nambudiri. 1989. Tomlinsonia thomassonii, gen. et sp. nov., a permineralized grass from the upper Miocene Ricardo Formation. California. Reviews of Paleobotany and Palynology 60:165–177.

    Google Scholar 

  • Tieszen, L.L., and T. Fagre. 1993. Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissues. In Prehistoric human boned archaeology at the molecular level, eds. J.B. Lambert, and G. Grupe, 121–155. Berlin: Springer.

    Google Scholar 

  • Tütken, T., T.W. Vennemann, H. Janz, and E.P.J. Heizmann. 2006. Palaeoenvironment and palaeoclimate of the Middle Miocene lake in the Steinheim basin, SW Germany, a reconstruction from C, O, and Sr isotopes of fossil remains. Palaeogeography, Palaeoclimatology, Palaeoecology 241:457–491.

    Google Scholar 

  • van der Made, J. 2009. The pigs and “Old World peccaries” (Suidae and Palaeochoeridae, Suoidea, Artiodactyla) from the Middle Miocene of Sandelzhausen (southern Germany)—phylogeny and an updated classification of the Hyotheriinae and Palaeochoeridae. In Fossil lagerstätte Sandelzhausen (Miocene, southern Germany): Contributions to the fauna, eds. G.E. Rössner, and U.B. Göhlich. Paläontologische Zeitschrift (in press).

  • van der Merwe, N.J., and E. Medina. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forests. Geochimica et Cosmochimica Acta 53:1091–1094.

    Google Scholar 

  • van der Merwe, N.J., and E. Medina. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18:249–259.

    Google Scholar 

  • Vennemann, T.W., H.C. Fricke, R.E. Blake, J.R. O′Neil, and A. Colman. 2002. Oxygen isotope analysis of phosphates: A comparison of techniques for analysis of Ag3PO4. Chemical Geology 185:321–336.

    Google Scholar 

  • Vogel, J.C., B. Eglington, and J.M. Auret. 1990. Isotope fingerprints in elephant bone and ivory. Nature 346:747–749.

    Google Scholar 

  • Wang, Y., and T. Cerling. 1994. A model of fossil tooth and bone diagenesis: Implications for paleodiet reconstruction from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 107:281–289.

    Google Scholar 

  • Witt, W. 1998. Die miozäne Fossil-Lagerstätte Sandelzhausen. 14. Ostracoden. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 38:135–165.

    Google Scholar 

  • Yakir, D. 1992. Variations in the natural abundances of oxygen-18 and deuterium in plant carbohydrates. Plant, Cell, and Environment 15:1005–1020.

    Google Scholar 

  • Yakir, D. 1997. Oxygen-18 of leaf water: A crossroad for plant associated isotopic signals. In Stable isotopes: Integration of biological, ecological. and geochemical processes, eds. H. Griffiths, 147–168. Oxford: BIOS.

    Google Scholar 

  • Zachos, J., M. Pagani, L. Sloan, E. Thomas, and K. Billups. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693.

    Google Scholar 

  • Zanazzi, A., and M. Kohn. 2008. Ecology and physiology of White River mammals based on stable isotope ratios of teeth. Palaeogeography, Palaeoclimatology, Palaeoecology 257:22–37.

    Google Scholar 

Download references

Acknowledgments

We thank Kurt Heissig, Bayerische Staatssammlung für Paläontologie in Munich for kindly supplying the teeth from Sandelzhausen for isotope sampling. This study was financed by the Swiss National Science foundation grant 200021-100530/1 to TWV and partly by the Emmy Noether-Program of the German National Science Foundation DFG grant TU 148/2-1 to TT. The two reviewers Robert Feranec and Hervé Bocherens provided instructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tütken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tütken, T., Vennemann, T. Stable isotope ecology of Miocene large mammals from Sandelzhausen, southern Germany. Paläontol Z 83, 207–226 (2009). https://doi.org/10.1007/s12542-009-0011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12542-009-0011-y

Keywords

Schlüsselwörter

Navigation