Skip to main content
Log in

Study on Electro-Spark Deposition Welding of Ultra-thin Sheet of Ti-6.5Al-1Mo-1 V-2Zr Alloy

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In this work, butt welding experiment of Ti-6.5Al-1Mo-1 V-2Zr alloy sheet of 0.5 mm thickness was performed via electro-spark deposition method. The results of the experiment indicate that the reactive titanium alloy’s surface is free from oxidation without trailing shielding protection due to low heat input and rapid thermal cycles associated with the process. The fusion zone is mainly composed of equiaxed microstructure of martensite α′ and α dual phases, wherein the amount of α′ in the central joint is higher than that adjacent to the base metal. The maximum tensile strength of the welded joint can reach 1187 MPa, which is 95% of the base metal. Besides, the joint shows obvious plastic deformation before fracture. The findings have demonstrated the possibility of widely applying the welding methodology to thin sheets of titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, V. A., Murty, S. V. S. N., Gupta, R. K., Rao, A. G., & Prasad, M. J. N. V. (2020). Effect of boron on microstructure evolution and hot tensile deformation behavior of Ti-5Al-5V-5Mo-1Cr-1Fe alloy. Journal of Alloys and Compounds, 831, 154672.

    Article  Google Scholar 

  2. Gui, Z. Z., Min, G. J., Liu, D. J., & Hu, P. P. (2015). Double-sided laser welding of dissimilar titanium alloys with linear variable thickness. International Journal of Advanced Manufacturing Technology, 79, 1597–1606.

    Article  Google Scholar 

  3. Vaithiyanathan, V., Balasubramanian, V., Malarvizhi, S., Petley, V., & Verma, S. (2020). Establishing relationship between fusion zone hardness and grain size of gas tungsten constricted arc welded thin sheets of titanium alloy. SN Applied Sciences, 2, 88.

    Article  Google Scholar 

  4. Chen, X., Zhang, J., Xin Chen, X., & Cheng, Z. H. (2018). Electron beam welding of laser additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy thick plate. Vacuum, 151, 116–121. https://doi.org/10.1016/j.vacuum.2018.02.011

    Article  Google Scholar 

  5. Pereira, V. F., Fonseca, E. B., Costa, A. M. S., Bettini, J., & Lopes, E. S. N. (2020). Nanocrystalline structural layer acts as interfacial bond in Ti/Al dissimilar joints produced by friction stir welding in power control mode. Scripta Materialia, 174, 80–86. https://doi.org/10.1016/j.scriptamat.2019.08.031

    Article  Google Scholar 

  6. Liu, Y. J., Li, S. J., Wang, H. L., Hou, W. T., Hao, Y. L., Yang, R., Sercombe, T. B., & Zhang, L. C. (2016). Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Materialia, 113, 56–67. https://doi.org/10.1016/j.actamat.2016.04.029

    Article  Google Scholar 

  7. Dai, J., Zhu, J., Chen, C., & Weng, F. (2016). High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides: A review. Journal of Alloys and Compounds, 685, 784–798. https://doi.org/10.1016/j.jallcom.2016.06.212

    Article  Google Scholar 

  8. Chamanfar, A., Huang, M. F., Pasang, T., Tsukamoto, M., & Misiolek, W. Z. (2020). Microstructure and mechanical properties of laser welded Ti–10V–2Fe–3Al (Ti1023) titanium alloy. Journal of Materials Research and Technology, 9(4), 7721–7731. https://doi.org/10.1016/j.jmrt.2020.04.028

    Article  Google Scholar 

  9. Liu, H., & Fujii, H. (2018). Microstructural and mechanical properties of a beta-type titanium alloy joint fabricated by friction stir welding. Materials Science and Engineering: A, 711, 140–148. https://doi.org/10.1016/j.msea.2017.11.006

    Article  Google Scholar 

  10. Li, R. F., Li, Z. G., Zhu, Y. Y., & Rong, L. (2010). A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering A, 528, 1138–1142.

    Article  Google Scholar 

  11. Sampreet, K. R., Mahidhar, V., Kannan, R., & Kannan, T. D. B. (2019). Optimization of parameters in Nd: YAG laser welding of Ti-6Al-4V using TOPSIS. Materials Today: Proceedings, 401, 2214–7853.

    Google Scholar 

  12. Kumar, B., & Bag, S. (2019). Phase transformation effect in distortion and residual stress of thin-sheet laser welded Ti-alloy. Optics and Lasers in Engineering, 122, 209–224. https://doi.org/10.1016/j.optlaseng.2019.06.008

    Article  Google Scholar 

  13. Zhang, Y., Ying, Y. Y., Liu, X. X., & Wei, H. Y. (2016). Deformation control during the laser welding of a Ti6Al4V thin plate using a synchronous gas cooling method. Materials and Design, 90, 931–941.

    Article  Google Scholar 

  14. Kim, J., Kim, S., Kim, K., Jung, W., Youn, D., Lee, J., & Ki, H. (2016). Effect of beam size in laser welding of ultra-thin stainless steel foils. Journal of Materials Processing Technology, 233, 125–134. https://doi.org/10.1016/j.jmatprotec.2016.02.019

    Article  Google Scholar 

  15. Mooli, H., Seeram, S. R., Goteti, S., & Boggarapu, N. R. (2021). Optimal weld bead profiles in the conduction mode LBW of thin Ti–6Al–4V alloy sheets. Materials Science, 8, 698–715.

    Google Scholar 

  16. Gould, J. (2011). Application of electro-spark deposition as a joining technology. Welding Journal, 90, 191s–197s.

    Google Scholar 

  17. Enrique, P. D., Jiao, Z., Zhou, N. Y., & Toyserkani, E. (2018). Effect of microstructure on tensile properties of electrospark deposition repaired Ni-superalloy. Materials Science and Engineering: A, 729, 268–275. https://doi.org/10.1016/j.msea.2018.05.049

    Article  Google Scholar 

  18. Burkov, A. A., & Chigrin, P. G. (2020). Synthesis of Ti-Al intermetallic coatings via electrospark deposition in a mixture of Ti and Al granules technique. Surface & Coatings Technology, 387, 125550.

    Article  Google Scholar 

  19. ASTM E8/E8M-16a. (2016). Standard Test Methods for Tension Testing of Metallic Materials. West Conshohocken: ASTM International. http://www.astm.org

  20. Wang, X. Y., Li, W. Y., Ma, T. J., Yang, X. W., & Vairis, A. (2018). Microstructural evolution and mechanical properties of a linear friction welded two-phase Ti-6.5 Al-3.5 Mo-1.5 Zr-0.3 Si titanium alloy joint. Materials Science and Engineering A, 743, 12–23.

    Article  Google Scholar 

  21. Syed, F. W., Anil Kumar, V., Gupta, R. K., & Kanjarla, A. K. (2019). Role of microstructure on the tension/compression asymmetry in a two-phase Ti-5Al-3Mo-1.5V titanium alloy. Journal of Alloys and Compounds, 795, 151–162. https://doi.org/10.1016/j.jallcom.2019.04.272

    Article  Google Scholar 

  22. Beladi, H., Chao, Q., & Rohrer, G. S. (2014). Variant selection and intervariant crystallographic planes distribution in martensite in a Ti–6Al–4V alloy. Acta Materialia, 80, 478–489. https://doi.org/10.1016/j.actamat.2014.06.064

    Article  Google Scholar 

  23. Zheng, Y., Alam, T., Banerjee, R., Banerjee, D., & Fraser, H. L. (2018). The influence of aluminum and oxygen additions on intrinsic structural instabilities in titanium-molybdenum alloys. Scripta Materialia, 152, 150–153. https://doi.org/10.1016/j.scriptamat.2018.04.030

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51704092) and the Fundamental Research Funds for the Central Universities (JZ2021HGTB0098).

Author information

Authors and Affiliations

Authors

Contributions

All author read and approve the final manuscript.

Corresponding author

Correspondence to Fei Liu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Chen, T., Pang, L. et al. Study on Electro-Spark Deposition Welding of Ultra-thin Sheet of Ti-6.5Al-1Mo-1 V-2Zr Alloy. Int. J. Precis. Eng. Manuf. 23, 1203–1210 (2022). https://doi.org/10.1007/s12541-022-00699-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-022-00699-y

Keywords

Navigation