Skip to main content
Log in

Moving Object Detection with Single Moving Camera and IMU Sensor using Mask R-CNN Instance Image Segmentation

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper describes a new method for the moving object detection using the IMU sensor and instance image segmentation. In the proposed method, the feature points are extracted by the detector, and the initial fundamental matrix is calculated from the IMU data. Next, the epipolar line is used to classify the extracted feature points. From the background feature point matching, fundamental matrix is calculated iteratively to minimize the error of classification. After the feature point classification, image segmentation is used to enhance the quality of the classification result. The proposed method is implemented and tested with real-world driving videos, and compared with the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Baek, S., Kim, H., & Boo, K. (2014). Robust estimation of vehicle recognition on curved roads using a rear-side view vision system. International Journal of Precision Engineering and Manufacturing, 15(4), 753–760

    Article  Google Scholar 

  2. Bay, H., Tuytelaars, T., & Van Gool, L. (2008). SURF: Speeded up robust features. Computer Vision and Image Understanding, 110(3), 346–359

    Article  Google Scholar 

  3. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE computer society conference on computer vision and pattern recognition (pp. 886–893).

  4. DeTone, D., Malisiewicz, T., & Rabinovich, A. (2018). SuperPoint: self-supervised interest point detection and description. In IEEE conference on computer vision and pattern recognition (pp. 224–236).

  5. Ha, S. W., & Moon, Y. H. (2011). Multiple object tracking using SIFT features and location matching. International Journal of Smart Home, 5(4), 17–26

    Google Scholar 

  6. He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In IEEE conference on computer vision and pattern recognition (pp. 2961–2969).

  7. Hu, W. C., Chen, C. H., Chen, T. Y., Huang, D. Y., & Wu, Z. C. (2015). Moving object detection and tracking from video captured by moving camera. Journal of Visual Communication and Image Representation, 30, 164–180

    Article  Google Scholar 

  8. Jung, S., Song, S., Chang, M., & Park, S. (2018). Range image registration based on 2D synthetic images. Computer-Aided Design, 94, 16–27

    Article  Google Scholar 

  9. Jung, S., Cho, Y., & Chang, M. (2020). Moving object detection from moving camera image sequences using an Inertial Measurement Unit sensor. Applied Sciences, 10(1), 268

    Article  Google Scholar 

  10. Kim, C., Li, F., Ciptadi, A., & Regh, J. M. (2015) Multiple hypothesis tracking revisited. In Proceddings of the IEEE international conference on computer vision (pp. 4696–4704).

  11. Kuen, J., Lim, K. M., & Lee, C. P. (2015). Self-taught learning of a deep invariant representation for visual tracking via temporal slowness principle. Pattern Recognition, 48(10), 2964–2982

    Article  Google Scholar 

  12. Leal-Taixe, L., Canton-Ferrer, C., & Schindler, K. (2016). Learning by tracking: Siamese CNN for robust target association. In Proceedings of the IEEE conference on computer vision and pattern recognition workshop (pp. 33–40).

  13. Li, P., Wang, D., Wang, L., & Lu, H. (2018). Deep visual tracking: Review and experimental comparison. Pattern Recognition, 76, 323–338

    Article  Google Scholar 

  14. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollar, P., & Zitnick, C. L. (2014). Microsoft COCO: Common objects in context. In European conference on computer vision (pp. 740–755).

  15. Liu, X., Lin, L., Yan, S., Jin, H., & Jiang, W. (2011). Adaptive object tracking by learning hybrid template online. IEEE Transactions on Circuits and Systems for Video Technology, 21(11), 1588–1599

    Article  Google Scholar 

  16. Lowe, D. G. (1999). Object recognition from local scale-invariant features. Computer Vision, 2, 1150–1157

    Google Scholar 

  17. Ma, C., Huang, J. B., Yang, X., & Yang, M. H. (2015). Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE international conference on computer vision (pp. 3074–3082).

  18. Ning, J., Zhang, L., Zhang, D., & Wu, C. (2009). Robust object tracking using joint color-texture histogram. International Journal of Pattern Recognition and Artificial Intelligence, 23(7), 1245–1263

    Article  Google Scholar 

  19. Pan, J., Hu, B., & Zhang, J. Q. (2008). Robust and accurate object tracking under various types of occlusions. IEEE Transactions on Circuits and Systems for Video Technology, 18(2), 223–236

    Article  Google Scholar 

  20. Roshanbin, N., & Miller, J. (2017). A comparative study of the performance of local feature-based pattern recognition algorithms. Pattern Analysis and Applications, 20(4), 1145–1156

    Article  MathSciNet  Google Scholar 

  21. Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. In International conference on computer vision (pp. 2564–2571).

  22. Wang, N., & Yeung, D. Y. (2013). Learning a deep compact image representation for visual tracking. In Adv. neural inf. process. syst. (pp. 809–817).

  23. Wang, L., Quyang, W., Wang, X., & Lu, H. (2015) Visual tracking with fully convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 3119–3127).

  24. Zhao, Q., Yang, Z., & Tao, H. (2010). Differential earth mover’s distance with its applications to visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(2), 274–287

    Article  Google Scholar 

  25. Zhong, Y., Jain, A. K., & Dubuisson-Jolly, M. P. (2000). Object tracking using deformable templates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(5), 544–549

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the IT R&D program of MSIT/IITP. [R2020040040, Development of 5G-based 3D spatial scanning device technology for virtual space composition.]

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minho Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Cho, Y., Lee, K. et al. Moving Object Detection with Single Moving Camera and IMU Sensor using Mask R-CNN Instance Image Segmentation. Int. J. Precis. Eng. Manuf. 22, 1049–1059 (2021). https://doi.org/10.1007/s12541-021-00527-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00527-9

Keywords

Navigation