Skip to main content
Log in

Fabrication of Channel Circuit Electrodes and Flexible Graphene Resistive Sensors for Detecting Dinitrotoluene 2,4 (DNT)

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents flexible explosive sensors possibly manufacturable using high volume techniques. The flexible sensors were created using channel circuit electrodes (CCE) coated with hydrazinium graphene (HG) by a sprayer. The channel circuits produced using paste fill of fine traces is a simple yet largely unreported technique for creating electrodes. The CCE were prepared by molding electrode patterns into resin and filling the channels with conductive paste, producing trace widths of 100 µm and thickness of 4 µm. Its resistance was 5–10 kΩ/each electrode of 60 cm long in serpentine shape. Sensors created using HG as the resistive layer on CCE showed their ability to detect 18.1 ppb of Dinitrotoluene 2,4 (DNT), a precursor to trinitrotoluene (TNT). To form a complete package, resistive type sensors could be made into a portable detection system using simple electronics; we demonstrated the system with battery powered portable electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Moore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75, 2499–2512.

    Article  Google Scholar 

  2. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J., et al. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotechnology, 5, 574–578.

    Article  Google Scholar 

  3. Søndergaard, R., Hösel, M., Angmo, D., Larsen-Olsen, T. T., & Krebs, F. C. (2012). Roll-to-roll fabrication of polymer solar cells. Materials Today, 15, 36–49.

    Article  Google Scholar 

  4. Krebs, F. C., Gevorgyan, S. A., & Alstrup, J. (2009). A roll-to-roll process to flexible polymer solar cells: Model studies, manufacture and operational stability studies. Journal of Materials Chemistry, 19, 5442–5451.

    Article  Google Scholar 

  5. Gilleo, K. (2019). The circuit centennial. Retrieved December 13, 2019 from https://www.nonstopsystems.com/radio/pdf-hell/article-gilleo-03.pdf.

  6. Stepan, W. E. (1985). Method of producing fine line conductive/resistive patterns on an insulating coating. U. S. Patent, 4508753.

  7. Acikgoz, C., Hempenius, M. A., Huskens, J., & Vancso, G. J. (2011). Polymers in conventional and alternative lithography for the fabrication of nanostructures. European Polymer Journal, 47, 2033–2052.

    Article  Google Scholar 

  8. Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric Field effect in atomically thin carbon films. Science, 306, 666–669.

    Article  Google Scholar 

  9. Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature Materials, 6, 183–191.

    Article  Google Scholar 

  10. Allen, M. J., Tung, V. C., & Kaner, R. B. (2010). Honeycomb carbon: A review of graphene. Chemical Reviews, 110, 132–145.

    Article  Google Scholar 

  11. Zhang, Y., Tan, Y.-W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201–204.

    Article  Google Scholar 

  12. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906–3924.

    Article  Google Scholar 

  13. Dan, Y., Lu, Y., Kybert, N. J., Luo, Z., & Johnson, A. T. C. (2009). Intrinsic response of graphene vapor sensors. Nano Letters, 9, 1472–1475.

    Article  Google Scholar 

  14. Robinson, J. T., Perkins, K. F., Snow, E. S., Wei, Z., & Sheehan, P. E. (2008). Reduced graphene oxide molecular sensors. Nano Letters, 8, 3137–3140.

    Article  Google Scholar 

  15. Moseley, P. T. (1997). Solid state gas sensors. Measurement Science & Technology, 8, 223–237.

    Article  Google Scholar 

  16. Capone, S., et al. (2003). Solid state gas sensors: state of the art and future activities. Journal of Optoelectronics and Advanced Materials, 5, 1335–1348.

    Google Scholar 

  17. Kong, J., et al. (2000). Nanotube molecular wires as chemical sensors. Science, 287, 622–625.

    Article  Google Scholar 

  18. Collins, P. G., Bradley, K., Ishigami, M., & Zettl, A. (2000). Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 287, 1801–1804.

    Article  Google Scholar 

  19. Novoselov, K. S., et al. (2005). Two dimensional atomic crystals. Proceedings of National Academy of Sciences, 102(30), 10451–10453.

    Article  Google Scholar 

  20. Novoselov, K. S., et al. (2005). Two dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197–200.

    Article  Google Scholar 

  21. Wehling, T. O., Novoselov, K. S., Morozov, S. V., Vdovin, E. E., Katsnelson, M. I., Geim, A. K., et al. (2008). Molecular doping of graphene. Nano Letters, 8(1), 173–177.

    Article  Google Scholar 

  22. Leenaerts, O., Partoens, B., & Peeters, F. M. (2008). Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Physical Review B, 77, 125416.

    Article  Google Scholar 

  23. Zhang, J., Boyd, A., Tselev, A., Paranjape, M., & Barbara, P. (2006). Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Applied Physics Letters, 88, 123112.

    Article  Google Scholar 

  24. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., & Weiller, B. H. (2009). Practical chemical sensors from chemically derived graphene. ACS Nano, 3, 301–306.

    Article  Google Scholar 

  25. Schedin, F., Geim, A. K., et al. (2007). Detection of individual gas molecules adsorbed on graphene. Nature Materials, 6, 652–655.

    Article  Google Scholar 

  26. Hummers, W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339.

    Article  Google Scholar 

  27. Rosencrance, A. B., & Brueggemann, E. E. (1993). Experimental method for determination of the rate of evaporation of 2,4,6-trinitrotoluene (TNT) and 2,4dinitrotoluene (2,4-DNT). Technical report, U.S. Army Biomedical Research and Development Laboratory, Fort Detrick, Frederick, MD 21702-5010, June 1993.

  28. Lee, K., Yoo, Y. K., Chae, M., et al. (2019). Highly selective reduced graphene oxide (rGO) sensor based on a peptide aptamer receptor for detecting explosives. Scientific Reports, 9, 10297.

    Article  Google Scholar 

  29. Chae, M.-S., et al. (2015). A micro-preconcentrator combined olfactory sensing system with a micromechanical cantilever sensor for detecting 2,4-dinitrotoluene gas vapor. Sensors, 15(8), 18167–18177.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grant NRF-2018R1A6A1A03025526 under the Priority Research Program through National Research Foundation of Korea(NRF) under Ministry of Education and the Education and Research Promotion Program of KOREATECH in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byungki Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 38946 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, S., Song, S. & Kim, B. Fabrication of Channel Circuit Electrodes and Flexible Graphene Resistive Sensors for Detecting Dinitrotoluene 2,4 (DNT). Int. J. Precis. Eng. Manuf. 21, 1943–1953 (2020). https://doi.org/10.1007/s12541-020-00391-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00391-z

Keywords

Navigation