Skip to main content
Log in

Improved Measurement of Thin Film Thickness in Spectroscopic Reflectometer Using Convolutional Neural Networks

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This research introduces a novel method of ensuring more reliable measurement of thin film thickness in spectroscopic reflectometer. Nonlinear fitting is the method most commonly used for measuring thin film thickness; however, it runs into the problem of a local minimum, which entails ambiguity. To improve measurement, prior to analysis of spectral reflectance profiles using nonlinear fitting, initial thickness value is estimated based on convolutional neural networks. Due to the supportive role of convolutional neural networks, thin film thickness can be determined without ambiguity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(d\) :

Thickness of thin film

\(k\) :

Spectral wavenumber

\(R\) :

Total reflection coefficient

\(r_{12}\) :

Fresnel reflection coefficients of top boundaries of thin films

\(r_{23}\) :

Fresnel reflection coefficients of bottom boundaries of thin films

\(N\) :

Refractive index of thin films

\(R_{ref}\) :

Spectral reflectance of reference specimen

\(G_{ref}\) :

Spectral density of reference specimen

\(G_{sam}\) :

Spectral density of unknown film thickness sample

\(R_{sam}\) :

Spectral reflectance of unknown film thickness

\(\theta_{1}\) :

Angle of incidence

\(\theta_{2}\) :

Angle of refraction

\(w\) :

Value of the kernel

\(v\) :

Value of feature map

\(b\) :

Additive bias

\(p\) :

Position in a kernel

\(x\) :

Position of unit in a feature map

\(i\) :

Layer of a feature map

References

  1. Piegari, A., & Masetti, E. (1985). Thin film thickness measurement: A comparison of various techniques. Thin Solid Films,124(3), 848–852.

    Google Scholar 

  2. Debnath, S. K., You, J. H., & Kim, S. W. (2009). Determination of film thickness and surface profile using reflectometry and spectrally resolved phase shifting interferometry. International Journal of Precision Engineering and Manufacturing,10(5), 5–10.

    Article  Google Scholar 

  3. Seo, Y. B., Yon, Y. H., & Joo, K. N. (2016). 3D multi-layered film thickness profile measurements based on photometric type imaging ellipsometry. International Journal of Precision Engineering and Manufacturing,17(8), 989–993.

    Article  Google Scholar 

  4. Kihara, T., & Yokomori, K. (1990). Simultaneous measurement of refractive index and thickness of thin film by polarized reflectances. Applied Optics,29(34), 5069–5073.

    Article  Google Scholar 

  5. Urbánek, M., Spousta, J., Behounek, T., & Sikola, T. (2007). Imaging reflectometry in situ. Applied Optics,46, 6309–6313.

    Article  Google Scholar 

  6. Ohlídal, M., Ohlídal, I., Klapetek, P., Nečas, D., & Majumdar, A. (2011). Measurement of the thickness distribution and optical constants of non-uniform thin films. Measurement Science & Technology,22, 085104.

    Article  Google Scholar 

  7. Jo, T., Kim, K. R., Kim, S. R., & Pahk, H. J. (2014). Thickness and surface measurement of transparent thin-film layers using white light scanning interferometry combined with reflectometry. Journal of the Optical Society of Korea,18(3), 236–243.

    Article  Google Scholar 

  8. Kim, K. R., Kim, S. R., Kwon, S. Y., & Pahk, H. J. (2014). Volumetric thin film thickness measurement using spectroscopic imaging reflectometer and compensation of reflectance modeling error. International Journal of Precision Engineering and Manufacturing,15(9), 1817–1822.

    Article  Google Scholar 

  9. You, J. W., Kim, S. H., & Kim, D. S. (2008). High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer. Optics Express,16(25), 21022–21031.

    Article  Google Scholar 

  10. Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural network approach. IEEE Transactions on Neural Networks,8(1), 98–113.

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems,1, 1097–1105.

    Google Scholar 

  12. Kim, Y. (2014). Convolutional neural networks for sentence classification. Empirical Methods in Natural Language Processing, 1746–1751.

  13. Ji, S., Xu, W., & Yang, M. (2013). 3D convolutional neural networks for human action recognition. IEEE Transaction on Pattern Analysis and Machine Intelligence,35(1), 221–231.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Gab Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, MG. Improved Measurement of Thin Film Thickness in Spectroscopic Reflectometer Using Convolutional Neural Networks. Int. J. Precis. Eng. Manuf. 21, 219–225 (2020). https://doi.org/10.1007/s12541-019-00260-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00260-4

Keywords

Navigation