Skip to main content
Log in

Optimal Powder Deposition Process to Develop a New Direct-Write Additive Manufacturing System

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

In functionally graded materials (FGM), material property gradually changes within a product. To manufacture FGM by additive manufacturing (AM) using polymer powders, precise deposition of different powder materials is crucial. The powder deposition, however, is challenging, because process control and material choices are complicated. This paper presents a newly developed laser-based AM system using the direct deposit of poly-lactic acid powders on the target surface. This direct-writing AM system can facilitate material change even within a layer for superior material property variation. This study characterizes the optimal process conditions for deposition consistency by statistical methods. This study also identifies suitable statistical models by examining the model characteristics such as lack-of-fit and curvature. In addition, this study finds an appropriate statistical method to handle process abnormality such as no powder flow. Through these analyses, this study characterizes the optimal combination of process conditions and material choices for stable powder deposition, and verifies the best conditions for the new AM system. This study will help develop a new AM system with the optimal deposition for each material composition to produce novel material structure for FGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee, P.-H., Cho, K., Lee, S. W., Kim, I. W., Park, S., Ko, J., et al. (2015). Fabrication of three-dimensional functionally graded materials using controlled polycaprolactone powder characteristics and laser material processing. Journal of Composite Materials, 49(22), 2733–2743.

    Article  Google Scholar 

  2. Yoo, D.-J. (2012). Heterogeneous porous scaffold design for tissue engineering using triply periodic minimal surfaces. International Journal of Precision Engineering and Manufacturing, 13(4), 527–537.

    Article  Google Scholar 

  3. Lee, H., Lim, C. H. J., Low, M. J., Tham, N., Murukeshan, V. M., & Kim, Y.-J. (2017). Lasers in additive manufacturing: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 307–322.

    Article  Google Scholar 

  4. Lee, P.-H., Chang, E., Yu, S., Lee, S. W., Kim, I. W., Park, S., et al. (2013). Modification and characteristics of biodegradable polymer suitable for selective laser sintering. International Journal of Precision Engineering and Manufacturing, 14(6), 1079–1086.

    Article  Google Scholar 

  5. Lu, X., Yang, S., & Evans, J. R. (2007). Dose uniformity of fine powders in ultrasonic microfeeding. Powder Technology, 175(2), 63–72.

    Article  Google Scholar 

  6. Park, J.-H., Lim, T.-W., Kim, S.-D., & Park, S.-H. (2016). Design and experimental verification of flexible plate-type piezoelectric vibrator for energy harvesting system. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(3), 253–259.

    Article  Google Scholar 

  7. Kuo, C., Peng, W., & Chiang, A. (2018). Evaluations of Surface Integrity and Mechanical Performance in Laser Melting of Stainless Steel Powders with Heterogeneous Metal Substrates. International Journal of Precision Engineering and Manufacturing, 19(3), 431–439.

    Article  Google Scholar 

  8. Kim, M.-S., Chu, W.-S., Kim, Y.-M., Avila, A. P. G., & Ahn, S.-H. (2009). Direct metal printing of 3D electrical circuit using rapid prototyping. International Journal of Precision Engineering and Manufacturing, 10(5), 147–150.

    Article  Google Scholar 

  9. Kwon, D., Park, E., Ha, S., & Kim, N. (2017). Effect of humidity changes on dimensional stability of 3D printed parts by selective laser sintering. International Journal of Precision Engineering and Manufacturing, 18(9), 1275–1280.

    Article  Google Scholar 

  10. Beverloo, W., Leniger, H., & Van de Velde, J. (1961). The flow of granular solids through orifices. Chemical Engineering Science, 15(3–4), 260–269.

    Article  Google Scholar 

  11. Spink, C. D., & Nedderman, R. (1978). Gravity discharge rate of fine particles from hoppers. Powder Technology, 21(2), 245–261.

    Article  Google Scholar 

  12. Yang, S., & Evans, J. R. (2003). Computer control of powder flow for solid freeforming by acoustic modulation. Powder Technology, 133(1), 251–254.

    Article  Google Scholar 

  13. Chen, X., Seyfang, K., & Steckel, H. (2012). Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: The investigation of factors influencing on the dosing performance. International Journal of Pharmaceutics, 433(1), 34–41.

    Article  Google Scholar 

  14. Jiang, Y., Matsusaka, S., Masuda, H., & Qian, Y. (2009). Development of measurement system for powder flowability based on vibrating capillary method. Powder Technology, 188(3), 242–247.

    Article  Google Scholar 

  15. Kumar, P., Santosa, J. K., Beck, E., & Das, S. (2004). Direct-write deposition of fine powders through miniature hopper-nozzles for multi-material solid freeform fabrication. Rapid Prototyping Journal, 10(1), 14–23.

    Article  Google Scholar 

  16. Daniel, C. (1960). Locating outliers in factorial experiments. Technometrics, 2(2), 149–156.

    Article  MathSciNet  MATH  Google Scholar 

  17. John, J. (1978). Outliers in factorial experiments. Applied Statistics, 27, 111–119.

    Article  Google Scholar 

  18. Winer, B. J., Brown, D. R., & Michels, K. M. (1971). Statistical principles in experimental design (Vol. 2). New York: McGraw-Hill.

    Google Scholar 

  19. Efron, B. (1994). Missing data, imputation, and the bootstrap. Journal of the American Statistical Association, 89(426), 463–475.

    Article  MathSciNet  MATH  Google Scholar 

  20. NIST/SEMATECH e-Handbook of statistical methods. http://www.itl.nist.gov/div898/handbook/. Accessed 08/01 2017.

  21. Bennett, C. A., & Franklin, N. L. (1954). Statistical analysis in chemistry and the chemical industry (724 pp). New York: Wiley

    Google Scholar 

  22. Little, R. J., & Rubin, D. B. (2014). Statistical analysis with missing data. Hoboken: Wiley.

    MATH  Google Scholar 

  23. Mallinckrodt, C. H., Clark, W. S., & David, S. R. (2001). Accounting for dropout bias using mixed-effects models. Journal of Biopharmaceutical Statistics, 11(1–2), 9–21.

    Article  Google Scholar 

  24. Ashby, M. F., & Johnson, K. (2013). Materials and design: the art and science of material selection in product design. Oxford: Butterworth-Heinemann.

    Google Scholar 

  25. Poulikidou, S., Schneider, C., Björklund, A., Kazemahvazi, S., Wennhage, P., & Zenkert, D. (2015). A material selection approach to evaluate material substitution for minimizing the life cycle environmental impact of vehicles. Materials and Design, 83, 704–712.

    Article  Google Scholar 

  26. Das, D., Bhattacharya, S., & Sarkar, B. (2016). Decision-based design-driven material selection: A normative-prescriptive approach for simultaneous selection of material and geometric variables in gear design. Materials and Design, 92, 787–793.

    Article  Google Scholar 

  27. Cui, X., Zhang, H., Wang, S., Zhang, L., & Ko, J. (2011). Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration. Materials and Design, 32(2), 815–821.

    Article  Google Scholar 

  28. Karande, P., Gauri, S. K., & Chakraborty, S. (2013). Applications of utility concept and desirability function for materials selection. Materials and Design, 45, 349–358.

    Article  Google Scholar 

  29. Chatterjee, P., & Chakraborty, S. (2012). Material selection using preferential ranking methods. Materials and Design, 35, 384–393.

    Article  Google Scholar 

  30. Gao, W., Zhang, Y., Ramanujan, D., Ramani, K., Chen, Y., Williams, C. B., et al. (2015). The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 69, 65–89.

    Article  Google Scholar 

  31. Chacón, J., Caminero, M., García-Plaza, E., & Núñez, P. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157.

    Article  Google Scholar 

  32. Vicente, G., Coteron, A., Martinez, M., & Aracil, J. (1998). Application of the factorial design of experiments and response surface methodology to optimize biodiesel production. Industrial Crops and Products, 8(1), 29–35.

    Article  Google Scholar 

  33. Schmidt, S. R., & Launsby, R. G. (1989). Understanding industrial designed experiments. Colorado: Air Academy Press.

    Google Scholar 

  34. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: process and product optimization using designed experiments. Hoboken: Wiley.

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Science Foundation (NSF) (CMMI #1331633), National Research Foundation of Korea (NRF) Grants funded by the Korea government (MSIP) (NRF-2017R1D1A1B03035703, NRF-2014R1A2A2A03006993, NRF-2014R1A1A2058955, NRF-2011-0011932), Hongik University and Ajou University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeonghan Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, H., Lee, N., Ko, J. et al. Optimal Powder Deposition Process to Develop a New Direct-Write Additive Manufacturing System. Int. J. Precis. Eng. Manuf. 20, 1057–1067 (2019). https://doi.org/10.1007/s12541-019-00129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00129-6

Keywords

Navigation