Skip to main content
Log in

A Pulse Inversion-Based Nonlinear Ultrasonic Technique using a Single-Cycle Longitudinal Wave for Evaluating Localized Material Degradation in Plates

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

General nonlinear ultrasonic techniques (NUTs) use tone-burst ultrasonic waves with a narrow bandwidth so that the fundamental frequency component and the second-order harmonic component can be clearly separated in the frequency domain. Meanwhile, when using a longitudinal wave propagating in the thickness direction, the number of cycles of tone-burst signals can be limited by the object thickness. In some cases, only a pulsed signal or a single-cycle signal, which has broad bandwidth, may be applicable to avoid superposition of the first transmitted wave and the multi-reflected waves. Such cases complicate the use of general NUTs, and it is necessary to apply a method to precisely extract the second-order harmonic component even in broadband signals to the NUT. In this study, the pulse inversion (PI) method, which can extract only even harmonics or odd harmonics by superposing or subtracting two wave signals obtained from 180° out-of-phase inputs, is applied to an NUT using broadband ultrasound. The performance of the PI-based NUT with respect to material degradation is verified using a series of heat-treated aluminum alloy specimens with various levels of precipitates. The experimental results show that the nonlinearity parameters measured with single-cycle signals agree well with the previous well-validated experimental results obtained using narrowband signals. Next, the PI-based NUT is used to assess the localized material degradation of a stainless steel plate subjected to high-cycle fatigue. The experimental results show that the profile of the measured nonlinearity parameters as a function of scan position is consistent with the intended distribution of localized fatigue damage, which demonstrates the potential feasibility of the proposed technique for evaluation of localized material degradation in plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

A1 :

Displacement amplitude of the fundamental wave

A1′:

Electric signal amplitude of the fundamental wave

A2 :

Displacement amplitude of the second-order harmonic wave

A2′:

Electric signal amplitude of the second-order harmonic wave

k:

Wavenumber

t:

Time

u:

Displacement

x:

Wave propagation distance

β:

Acoustic nonlinearity parameter

β’:

Relative acoustic nonlinearity parameter

ω:

Angular frequency

References

  1. Kim, C. (2012). Creep damage characterization of Ni-based superalloy by acoustic nonlinearity. Progress in Natural Science, 22(4), 303–310.

    Article  Google Scholar 

  2. Balasubramaniam, K., Valluri, J. S., & Prakash, R. V. (2011). Creep damage characterization using a low amplitude nonlinear ultrasonic technique. Materials Characterization, 62(3), 275–286.

    Article  Google Scholar 

  3. Valluri, J. S., Balasubramaniam, K., & Prakash, R. V. (2010). Creep damage characterization using non-linear ultrasonic techniques. Acta Materialia, 58(6), 2079–2090.

    Article  Google Scholar 

  4. Zhang, J., & Xuan, F. (2014). Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime. Journal of Applied Physics, 115(20), 204906.

    Article  Google Scholar 

  5. Nam, T., Choi, S., Lee, T., Jhang, K., & Kim, C. (2010). Acoustic nonlinearity of narrowband laser-generated surface waves in the bending fatigue of Al6061 alloy. Journal of the Korean Physical Society, 57(5), 1212–1217.

    Article  Google Scholar 

  6. Kim, J., Jacobs, L. J., Qu, J., & Littles, J. W. (2006). Experimental characterization of fatigue damage in a nickel-base superalloy using nonlinear ultrasonic waves. Journal of the Acoustic Society of America, 120(3), 1266–1273.

    Article  Google Scholar 

  7. Xiang, Y., Deng, M., & Xuan, F. (2014). Thermal degradation evaluation of HP40Nb alloy steel after long term service using a nonlinear ultrasonic technique. Journal of Nondestructive Evaluation, 33(2), 279–287.

    Article  Google Scholar 

  8. Xiang, Y., Deng, M., Xuan, F., & Liu, C. (2011). Experimental study of thermal degradation in ferritic Cr–Ni alloy steel plates using nonlinear Lamb waves. NDT&E International, 44(8), 768–774.

    Article  Google Scholar 

  9. Kim, C., Park, I., & Jhang, K. (2009). Nonlinear ultrasonic characterization of thermal degradation in ferritic 2.25Cr-1Mo steel. NDT&E International, 42(3), 204–209.

    Article  Google Scholar 

  10. Choi, S., Seo, H., & Jhang, K. (2015). Noncontact evaluation of acoustic nonlinearity of a laser-generated surface wave in a plastically deformed aluminum alloy. Research in Nondestructive Evaluation, 26(1), 13–22.

    Article  Google Scholar 

  11. Punnose, S., Mukhopadhyay, A., Sarkar, R., & Kumar, V. (2014). Characterisation of microstructural damage evolution during tensile deformation of a near-α titanium alloy: Effects of microtexture. Materials Science and Engineering: A Structural Materials: Properties, Microstructure and Processing, 607, 476–481.

    Article  Google Scholar 

  12. Jhang, K. (2009). Nonlinear ultrasonic techniques for nondestructive assessment of micro damage in material: A review. International Journal of Precision Engineering and Manufacturing, 10(1), 123–135.

    Article  Google Scholar 

  13. Cantrell, J. H., & Yost, W. T. (2001). Nonlinear ultrasonic characterization of fatigue microstructures”. International Journal of Fatigue, 23, 487–490.

    Article  Google Scholar 

  14. Hikata, A., Chick, B. B., & Elbaum, C. (1965). Dislocation contribution to the second harmonic generation of ultrasonic waves. Journal of Applied Physics, 36, 229–236.

    Article  Google Scholar 

  15. Matlack, K. H., Bradley, H. A., Thiele, S., Kim, J., Wall, J. J., Jung, H., et al. (2015). Nonlinear ultrasonic characterization of precipitation in 17-4PH stainless steel. NDT&E International, 71, 8–15.

    Article  Google Scholar 

  16. Mondal, C., Mukhopadhyay, A., & Sarkar, R. (2010). A study on precipitation characteristics induced strength variation by nonlinear ultrasonic parameter. Journal of Applied Physics, 108(12), 124910.

    Article  Google Scholar 

  17. Kim, C., & Lissenden, C. J. (2009). Precipitate contribution to the acoustic nonlinearity in nickel-based superalloy. Chinese Physics Letters, 26(8), 086107.

    Article  Google Scholar 

  18. Mini, R. S., Balasubramaniam, K., & Ravindran, P. (2015). An experimental investigation on the influence of annealed microstructure on wave propagation. Experimental Mechanics, 55(6), 1023–1030.

    Article  Google Scholar 

  19. Matlack, K. H., Wall, J. J., Kim, J., Qu, J., Jacobs, L. J., & Viehrig, H. (2012). Evaluation of radiation damage using nonlinear ultrasound. Journal of Applied Physics, 111(5), 054911.

    Article  Google Scholar 

  20. Rose, J. L. (2014). Ultrasonic guided waves in solid media. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  21. Krishnan, S., & O’Donnell, M. (1996). Transmit aperture processing for nonlinear contrast agent imaging. Ultrasonic Imaging, 18(2), 77–105.

    Article  Google Scholar 

  22. Ohara, Y., Kawashima, K., Yamada, R., & Horio, H. (2004). Evaluation of amorphous diffusion bonding by nonlinear ultrasonic method. AIP Conference Proceedings, 700, 944–951.

    Article  Google Scholar 

  23. Viswanath, A., Rao, B. P. C., Mahadevan, S., Jayakumar, T., & Raj, B. (2010). Microstructural characterization of M250 grade maraging steel using nonlinear ultrasonic technique. Journal Materials Science, 45(24), 6719–6726.

    Article  Google Scholar 

  24. Xie, F., Guo, Z., & Zhang, J. (2014). Strategies for reliable second harmonic of nonlinear acoustic wave through cement-based materials. Nondestructive Testing and Evaluation, 29(3), 183–194.

    Article  Google Scholar 

  25. Kim, J., Jhang, K., & Kim, C. (2018). Dependence of nonlinear ultrasonic characteristic on second-phase precipitation in heat-treated Al 6061-T6 alloy. Ultrasonics, 82, 84–90.

    Article  Google Scholar 

  26. Cantrell, J. H., & Zhang, X. (1998). Nonlinear acoustic response from precipitate-matrix misfit in a dislocation network. Journal of Applied Physics, 84, 5469–5472.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the research fund of Hanyang University (HY-2017), and the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (NRF-2013M2A2A9043241).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Young Jhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, S., Lee, P. & Jhang, KY. A Pulse Inversion-Based Nonlinear Ultrasonic Technique using a Single-Cycle Longitudinal Wave for Evaluating Localized Material Degradation in Plates. Int. J. Precis. Eng. Manuf. 20, 549–558 (2019). https://doi.org/10.1007/s12541-019-00093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00093-1

Keywords

Navigation