Skip to main content
Log in

Analytical Modelling of Temperature in Cylindrical Grinding to Predict Grinding Burns

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The direct measurement of grinding temperature is always difficult due to coolant cover and very size of work and wheel interaction zone. At the same time, high heat generation in grinding often leads to grinding burns thereby affecting surface integrity; in this context, theoretical evaluation of temperature could facilitate early detection of the grinding burns. This paper therefore presents an analytical model to evaluate grinding temperature and correlates it with the occurrence of grinding burns in terms of BNA. In general, the analytical approach involves evaluating real contact length, grinding forces and finally grinding zone temperature for the plunge cylindrical grinding. The maximum rise in grinding temperature at the surface was calculated, for the wet grinding process by considering the total heat flux entering into the grinding system. Model validation experiments have been performed to measure BNA and identify parametric conditions that produce grinding burns. The model estimate of grinding zone temperature of 631 °C is in good agreement (92%) with other research works. Further, when the calculated grinding temperature reaches beyond 631 °C, the grinding burns are observed on the work surface with a BNA value of the order of 100 mp for the micro alloyed steel. The minimum thermal damage in terms of BNA is observed at higher levels of wheel speed and spark-out time and lower levels of depth of cut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

[22]

Fig. 4

[24]

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

D :

Spherical grain diameter

C d :

Number of active grains per unit area

C w :

Specific heat density of work material

E 1 :

Modulus of elasticity of work-piece

E 2 :

Modulus of elasticity of grinding wheel

E*:

Elastic properties of work-wheel

F :

Friction coefficient between chip, grain, and the work-piece

F n :

Normal grinding force

\(F_{n}^{\prime }\) :

Specific normal grinding force

\(F_{nchip}^{\prime }\) :

Specific normal cutting force

\(F_{nslide}^{\prime }\) :

Specific normal sliding force

\(F_{nplough}^{\prime }\) :

Specific normal ploughing force

HB:

Brinell hardness number of the work-piece

L :

Paclet number

M :

Size of an abrasive grain mesh size

R a :

Surface roughness

R L :

Contact length ratio

R r :

Roughness factor

R ws :

Work-wheel fraction

T ch :

Chip temperature

V s :

Wheel velocity

V w :

Work velocity

a e :

Depth of cut

b :

Impression diameter

b w :

Width of grinding

d g :

Equivalent diameter of abrasive grain

d e :

Equivalent diameter of grinding wheel

d f :

Dynamic factor

d s :

Diameter of grinding wheel

d w :

Diameter of work-piece

f a :

Fraction of abrasive grain that actively cut in grinding

h :

Average un-deformed chip thickness

h f :

Fluid convection factor

k w :

Thermal conductivity

l c :

Real contact length

l fr :

Rough length of contact due to deflection

l fs :

Smooth length of contact due to deflection

l g :

Geometric length of contact

n w :

Work-piece speed

q ch :

Specific chip heat flux

q f :

Specific coolant heat flux

q t :

Total heat flux

v r :

In-feed

v 1 :

Poisson’s ratio of workpiece

v 2 :

Poisson’s ratio of grinding wheel

α :

Thermal diffusivity

β w :

Material thermal property

ρ w :

Density of work material

θ m :

Maximum rise in surface temperature

ε :

Fraction of energy entering into the work surface

δ :

Deflection due to normal grinding force

Ø :

Approach angle

References

  1. Takazawa, K. (1966). Effects of grinding variables on surface structure of hardened steels. Bulletin of the Japan Society of Precision Engineering, 2, 14.

    Google Scholar 

  2. Kohli, S., Guo, C., & Malkin, S. (1995). Energy partition to the workpiece for grinding with aluminum oxide, and CBN abrasive wheels. ASME Journal of Engineering for Industry, 117, 160–168.

    Article  Google Scholar 

  3. Lefebvrea, A., Vievilleb, P., Lipinskia, P., & Lescalier, C. (2006). Numerical analysis of grinding temperature measurement by the foil/workpiece thermocouple method. International Journal of Machine Tools and Manufacture, 46, 1716–1726.

    Article  Google Scholar 

  4. Batako, A. D., Rowe, W. B., & Morgan, M. N. (2005). Temperature measurement in high efficiency deep grinding. International Journal of Machine Tools and Manufacture, 45, 1231–1245.

    Article  Google Scholar 

  5. Rowe, W. B., Black, S. C. E., & Mills, B. (1996). Temperature control in CBN grinding. The International Journal of Advanced Manufacturing Technology, 12, 387–392.

    Article  Google Scholar 

  6. Nosko, O., Nagamine, T., Nosko, A. L., Romashko, A. M., Mori, H., & Sato, Y. (2015). Measurement of temperature at sliding polymer surface by grindable thermocouples. Tribology International, 88, 100–106.

    Article  Google Scholar 

  7. Ueda, T. (1986). Measurement of grinding temperature using infrared radiation pyrometer with optical fiber. Journal of Engineering for Industry, 108, 241–247.

    Article  Google Scholar 

  8. Liu, D., Wang, G., Nie, Z., & Rong, Y. K. (2016). An in situ infrared temperature-measurement method with back focusing on surface for creep feed grinding. Measurement, 94, 645–652.

    Article  Google Scholar 

  9. Mohammed, A., Folkes, J., & Chen, X. (2012). Detection of grinding temperatures using laser irradiation and acoustic emission sensing technique. Materials and Manufacturing Processes, 27(4), 395–400.

    Article  Google Scholar 

  10. Xu, L. M., Li, R. Z., Xu, K. Z., Chai, Y. D., & Hu, D. J. (2011). Numerical simulation and experiments on high hardness coating grinding temperature field. Journal of Shanghai Jiaotong University, 45(11), 1705–1709.

    Google Scholar 

  11. Li, D. D., Kuang, J., Chen, Q. Q., Hu, D. J., & Xu, L. M. (2014). Temperature and phase transformation in grinding process of WC-Co coating. Journal of Shenyang University of Technology, 5, 010.

    Google Scholar 

  12. Shin, J. (2013) Device and method for measuring temperature using infrared array sensors. US20130230074.

  13. Tsuzuki, T., Yamazaki, H., Takeno, H., & Takanori, Y. U. (2013). Infrared temperature measurement device. JP2013145153.

  14. Kato, T., & Fujii, H. (1997). Temperature measurement of workpiece in surface grinding by PVD film method. Journal of Manufacturing Science and Engineering, 119, 689.

    Article  Google Scholar 

  15. Comley, P., Walton, I., Jin, T., & Stephenson, D. J. (2006). A high material removal rate grinding process for the production of automotive crankshafts. Annals of the CIRP, 55, 347–350.

    Article  Google Scholar 

  16. Guo, C., Wu, Y., Varghese, V., & Malkin, S. (1999). Temperature and energy partition for grinding with vitrified CBN wheels. Annals of the CIRP, 48(1), 247–250.

    Article  Google Scholar 

  17. Kopac, J., & Krajnik, P. (2006). High-performance grinding—A review. Journal of Materials Processing Technology, 175, 278–284.

    Article  Google Scholar 

  18. Agarwal, S., & Venkateshwar Rao, P. (2010). Grinding characteristics, material removal and damage formation mechanism in high removal rate grinding of silicon carbide. International Journal of Machine Tools and Manufacture, 50, 1077–1087.

    Article  Google Scholar 

  19. Chen, X., Rowe, W. B., & Cai, R. (2002). Precision grinding using CBN wheel. International Journal of Machine Tools and Manufacture, 42, 585–593.

    Article  Google Scholar 

  20. Malkin, S., & Cook, N. H. (1971). The wear of grinding wheels. Part 2—Fracture wear. Journal of Engineering for Industry, 93(4), 1129–1133.

    Article  Google Scholar 

  21. Malkin, S., & Guo, C. (2008). Grinding technology—Theory and application of machining with abrasives (2nd ed.). New York: Industrial Press.

    Google Scholar 

  22. Rowe, W. B. (2009). Principle of modern grinding technology. Norwich: William Andrew Press.

    Google Scholar 

  23. Jaeger, J., & Carslaw, H. (1942). Moving sources of heat and the temperature of sliding contacts. New South Wales, 76(3), 202.

    Google Scholar 

  24. Hecker, R. L., Liang, S. Y., Wu, X. J., Xia, P., & Jin, D. G. W. (2007). Grinding force and power modeling based on chip thickness analysis. The International Journal of Advanced Manufacturing Technology, 33, 449–459.

    Article  Google Scholar 

  25. Hecker, R. L., Ramoneda, I. M., & Liang, S. Y. (2003). Analysis of wheel topography and grit force for grinding process modeling. Journal of Manufacturing Process, 5(1), 13.

    Article  Google Scholar 

  26. Qin, D., Wang, F., Xi, F., & Liu, Z. (2013). A theoretical model of grinding force and its simulation. Advanced Material Research, 690–693, 2395–2402.

    Article  Google Scholar 

  27. Durgumahanti, S. P., Singh, V., & Venkateshwara Rao, P. (2010). A new model for grinding force prediction and analysis. International Journal of Machine Tools and Manufacture, 50, 231–240.

    Article  Google Scholar 

  28. Vashista, M., & Paul, S. (2008). Study of the effect of process parameters in high-speed grinding on surface integrity by Barkhausen noise analysis. Institution of Mechanical Engineers, 222, 1625.

    Article  Google Scholar 

  29. Kumar, S., Yadav, M., Agrawal, P., Zaheer Khan, M., & Vashista, M. (2011). Assessment of micohardness profile in grinding using Barkhausen noise technique at various analysis parameters. International Scholarly Research Network, 2011, Article ID 525078.

  30. Siiriainen, J., Kendrish, S. J., Rickert, T. J., & Fix, R. M. (2008). Barkhausen noise and its use for quality control of the production of transmission gear. Advance Materials Research, 41–42, 407–419.

    Article  Google Scholar 

  31. Neseli, S., Asilturk, D., & Celik, L. (2012). Determining the optimum process parameter for grinding operations using robust process. Journal of Mechanical Science and Technology, 26(11), 3587–3595.

    Article  Google Scholar 

  32. Jagtap, K. R. (2012). Optimization of cylindrical grinding process parameters for AISI 1040 steel using Taguchi method. International Journal of Mechanical Engineering and Technology, 3(1), 47–56.

    Google Scholar 

  33. Malkin, S., & Guo, C. (2007). Thermal analysis of grinding. Annals of the CIRP, 56(2), 760–782.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhas S. Joshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thanedar, A., Dongre, G.G. & Joshi, S.S. Analytical Modelling of Temperature in Cylindrical Grinding to Predict Grinding Burns. Int. J. Precis. Eng. Manuf. 20, 13–25 (2019). https://doi.org/10.1007/s12541-019-00037-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-019-00037-9

Keywords

Navigation