Skip to main content
Log in

The fabrication of high-aspect-ratio cylindrical nano tool using ECM

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

With the miniaturization of various types of components and devices, micro- and nanometer-scale tools are increasingly in demand. Electrochemical machining (ECM) is a well-established technique for the fabrication of micro tools and nano tips. This paper presents a machining method for the fabrication of a high-aspect-ratio cylindrical nano tool using liquid membrane ECM, in which a straight reciprocating motion is applied to the anodic electrode. The method is based on periodic machining of the anodic rod within the amplitude of the straight reciprocating motion. In this process, the machining rate within amplitude varies periodically, allowing nano tools with high aspect ratios to be obtained by the presented method. Experiments were conducted to verify the proposed method. The influences of applied voltage, electrolyte concentration, amplitude and velocity of the straight reciprocating motion on the fabrication of cylindrical nano-electrode were investigated. By using this method, nano-electrodes with average diameters of several hundred nanometers and aspect ratios up to 70 were successfully fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Feynman, R. P., “There is Plenty of Room at the Bottom,” Engineering and Science, Vol. 23, No. 5, pp. 22–36, 1960.

    Google Scholar 

  2. Rajurkar, K. P., Levy, G., Malshe, A., Sundaram, M. M., McGeough, J., and Hu, X. et al., “Micro and Nano Machining by Electrophysical and Chemical Processes,” CIRP Annals — Manufacturing Technology, Vol. 55, No. 2, pp. 643–666, 2006.

    Article  Google Scholar 

  3. Malshe, A. P., Rajurkar, K. P., Virwani, K. R., Taylor, C. R., Bourell, D. L., and et al., “Tip-based Nanomanufacturing by Electrical, Chemical, Mechanical and Thermal Processes,” CIRP Annals — Manufacturing Technology, Vol. 59, No. 2, pp. 628–651, 2010.

    Article  Google Scholar 

  4. Shibuya, N., Ito, Y., and Natsu, W., “Electrochemical Machining of Tungsten Carbide Alloy Micro-pin with NaNO3 Solution,” Int. J. Precis. Eng. Manuf., Vol. 13, No. 11, pp. 2075–2078, 2012.

    Article  Google Scholar 

  5. Yang, I., Park, M. S., Chu, C. N., “Micro ECM with Ultrasonic Vibrations Using A Semi-cylindrical Tool,” Int. J. Precis. Eng. Manuf., Vol. 10, No. 2, pp. 5–10, 2009.

    Article  MATH  Google Scholar 

  6. Lu, Z. and Yoneyama, T., “Micro Cutting in the Micro Lathe Turning System,” International Journal of Machine Tools and Manufacture, Vol. 39, No. 7, pp. 1171–1183, 1999.

    Article  Google Scholar 

  7. Masuzawa, T., “State of the Art of Micromachining,” CIRP Annals — Manufacturing Technology, Vol. 49, No. 2, pp. 473–488, 2000.

    Article  Google Scholar 

  8. Masuzawa, T., Fujino, M., Kobayashi, K., Suzuki, T., and Kinoshita, N., “Wire Electro-discharge Grinding for Micro-machining,” CIRP Annals — Manufacturing Technology, Vol. 34, No. 1, pp. 431–434, 1985.

    Article  Google Scholar 

  9. Lim, H. S., Wong, Y. S., Rahman, M., and Edwin Lee, M. K., “A Study on the Machining of High-aspect Ratio Micro-structures Using Micro-EDM,” Journal of Materials Processing Technology, Vol. 140, No. 1-3, pp. 318–325, 2003.

    Article  Google Scholar 

  10. Bhattacharyya, B., Munda, J., and Malapati, M., “Advancement in Electrochemical Micro-machining,” International Journal of Machine Tools and Manufacture, Vol. 44, No. 15, pp. 1577–1589, 2004.

    Article  Google Scholar 

  11. Kock, M., Kirchner, V., and Schuster, R., “Electrochemical Micromachining with Ultrashort Voltage Pulses — A Versatile Method with Lithographical Precision,” Electrochimica Acta, Vol. 48, No. 20–22, pp. 3213–3219, 2003.

    Article  Google Scholar 

  12. Chiou, Y. C., Lee, R. T., Chen, T. J., and Chiou, J. M., “Fabrication of High Aspect Ratio Micro-rod Using A Novel Electrochemical Micro-machining Method,” Precision Engineering, Vol. 36, No. 2, pp. 193–202, 2012.

    Article  Google Scholar 

  13. Lim, Y. M., Lim, H. J., Liu, J. R., and Kim, S. H., “Fabrication of Cylindrical Micropins with Various Diameters Using DC Current Density Control,” Journal of Materials Processing Technology, Vol. 141, No. 2, pp. 251–255, 2003.

    Article  Google Scholar 

  14. Fan, Z. W., Hourng, L. W., and Wang, C. Y., “Fabrication of Tungsten Microelectrodes Using Pulsed Electrochemical Machining,” Precision Engineering, Vol. 34, No. 3, pp. 489–496, 2010.

    Article  Google Scholar 

  15. Choi, S. H., Ryu, S. H., Choi, D. K., and Chu, C. N., “Fabrication of WC Micro-shaft by using Electrochemical Etching,” The International Journal of Advanced Manufacturing Technology, Vol. 31, No. 7–8, pp. 682–687, 2007.

    Google Scholar 

  16. Choi, J. and Kim, K. B., “Nickel Nano-probe Shape Control using a Ring Cathode,” Journal of the Korean Physical Society, Vol. 55, No. 6, pp. 2427–2431, 2009.

    Article  Google Scholar 

  17. Ge, Y., Zhang, W., Chen, Y. L., Jin, C., and Ju, B. F., “A Reproducible Electropolishing Technique to Customize Tungsten SPM Probe: From Mathematical Modeling to Realization,” Journal of Materials Processing Technology, Vol. 213, No. 1, pp. 11–19, 2013.

    Article  Google Scholar 

  18. Cavallini, M. and Biscarini, F., “Electrochemically Etched Nickel Tips for Spin Polarized Scanning Tunneling Microscopy,” Review of Scientific Instruments, Vol. 71, No. 12, pp. 4457–4460, 2000.

    Article  Google Scholar 

  19. Chung, D. K., Shin, H. S., Park, M. S., Kim, B. H., and Chu, C. N., “Recent Researches in Micro Electrical Machining,” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 371–380, 2011.

    Article  Google Scholar 

  20. Ghoshal, B. and Bhattacharyya, B., “Influence of Vibration on Microtool Fabrication by Electrochemical Machining,” International Journal of Machine Tools and Manufacture, Vol. 64, pp. 49–59, 2013.

    Article  Google Scholar 

  21. Lim, M. Y. and Kim S. H., “An Electrochemical Fabrication Method for Extremely Thin Cylindrical Micro Pin,” International Journal of Machine Tools and Manufacture, Vol. 41, No. 15, pp. 2287–2296, 2001.

    Article  Google Scholar 

  22. Libioulle, L., Houbion, Y., and Gilles, J. M., “Very Sharp Platinum Tips for Scanning Tunneling Microscopy,” Review of Scientific Instruments, Vol. 66, No. 1, pp. 97–100, 1995.

    Article  Google Scholar 

  23. Khan, Y., Al-Falihn, H., Zhang, Y., Ng, T. K., and Ooi, B. S., “Twostep Controllable Electrochemical Etching of Tungsten Scanning Probe Microscopy Tips,” Review of Scientific Instruments, Vol. 83, No. 6, pp. 063708, 2012.

    Article  Google Scholar 

  24. Ju, B. F., Chen, Y. L., and Ge, Y., “The Art of Electrochemical Etching for Preparing Tungsten Probes with Controllable Tip Profile and Characteristic Parameters,” Review of Scientific Instruments, Vol. 82, No. 1, pp. 013707, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ningsong Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Qu, N., Zeng, Y. et al. The fabrication of high-aspect-ratio cylindrical nano tool using ECM. Int. J. Precis. Eng. Manuf. 14, 2179–2186 (2013). https://doi.org/10.1007/s12541-013-0295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0295-4

Keywords

Navigation