Skip to main content
Log in

Kinematic analysis of 7 degrees of freedom upper-limb exoskeleton robot with tilted shoulder abduction

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

An exoskeleton robot is a hybrid between human and robot where the two are mechanically integrated to function as one intelligent as well as powerful robot. This study presents a kinematic analysis of 7degrees of freedom (DOF) exoskeleton robot with its base rotational axis skewed to avoid singularity within workspace and to maximize ease of movement in all directions. The tilt of the base rotational axis configures the exoskeleton robot into an initial posture to which it is difficult to identify a geometric transformation from a kinematical model with all joint angels set to zero. When the limbs of the exoskeleton robot are configured either vertical or parallel to the ground, the resulting configuration can be initialized and then, ensuing kinematic analysis can be more conveniently performed from this nominal configuration. An analytical relationship defining a geometric transformation from the skewed configuration to the user-defined nominal configuration is developed and an explicit closed-form inverse kinematic solution for the 7 DOF exoskeleton robot is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mihelj, M., Nef, T., and Riener, R., “ARMin II-7 DoF rehabilitation robot: mechanics and kinematics” ICRA 2007, pp. 4120–4125, 2007.

  2. Klein, J., Spencer, S., Allington, J., Minakata, K., Wolbrecht, E., Smith, R., Bobrow, J., and Reinkensmeyer, D., “Biomimetic orthosis for the neurorehabilitation of the elbow and shoulder (BONES)” IEEE Biorob2008, pp. 535–541, 2008.

  3. Stienen, A. H. A., Hekman, E. E. G., Van der Helm, F. C. T., Prange, G. B., Jannink, M. J. A., Aalsma, A. M. M., and Van der Kooij, H., “Dampace: dynamic force-coordination trainer for the upper extremities” IEEE 10th International Conference on Rehabilitation Robotics (ICORR) 2007, pp. 820–826, 2007.

  4. Tsagarakis, N. G. and Caldwell, D. G., “Development and control of a ’soft-actuated’ exoskeleton for use in physiotherapy and training” Autonomous Robots, Vol. 15, No. 1, pp. 21–33, 2003.

    Article  Google Scholar 

  5. Romilly, D. P., Anglin, C., Gosine, R. G., Hershler, C., and Raschke, S. U., “A functional task analysis and motion simulation for the development of a powered upper-limb orthosis” IEEE Transactions on Rehabilitation Engineering, Vol. 2, No. 3, pp. 119–129, 1994.

    Article  Google Scholar 

  6. Perry, J. C., Rosen, J., and Burns, S., “Upper-limb powered exoskeleton design” IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 4, pp. 408–417, 2007.

    Article  Google Scholar 

  7. Carignan, C. R., Naylor, M. P., and Roderick, S. N., “Controlling shoulder impedance in a rehabilitation arm exoskeleton” IEEE International Conference on Robotics and Automation, 2008.

  8. Kim, E., Lee, S., and Lee, Y., “A dexterous robot hand with a biomimetic mechanism” Int. J. Precis. Eng. Manuf., Vol. 12, No. 2, pp. 227–235, 2011.

    Article  Google Scholar 

  9. Frisoli, A., Rocchi, F., Marcheschi, S., Dettori, A., Salsedo, F., and Bergamasco, M., “A new force-feedback arm exoskeleton for haptic interaction in virtual environments” Proc. 1st Joint Eurohaptics Conf. Symp. Haptic Interfaces Virtual Environ. Teleoperator Syst., pp. 195–201, 2005.

  10. Bergamasco, M., Allotta, B., Bosio, L., Ferretti, L., Parrini, G., Prisco, G., Salsedo, F., and Sartini, G., “An arm exoskeleton system for teleoperation and virtual environments applications” Proc. IEEE Int. Conf. Robot. Autom., Vol. 2, pp. 1449–1454, 1994.

    Google Scholar 

  11. Jau, B. M., “Anthropomorhic exoskeleton dual arm/hand telerobot controller” IEEE Int. Workshop Intell. Robots, pp. 715–718, 1988.

  12. Repperger, D., Hill, B., Hasser, C., Roark, M., and Phillips, C., “Human tracking studies involving an actively powered, augmented exoskeleton” Proc. 15th Southern Biomed. Eng. Conf., pp. 28–31, 1996.

  13. Kazerooni, H., “The human power amplifier technology at the University of California, Berkeley” Robotics and Autonomous Systems, Vol. 19, No. 2, pp. 179–187, 1996.

    Article  Google Scholar 

  14. Fasoli, S. E., Krebs, H. I., Stein, J., Frontera, W. R., and Hogan, N., “Effects of robotic therapy on motor impairment and recovery in chronic stroke” Archives of Physical Medicine and Rehabilitation, Vol. 84, No. 4, pp. 477–482, 2003.

    Article  Google Scholar 

  15. Krebs, H., Volpe, B., Ferraro, M., Fasoli, S., Palazzolo, J., Rohrer, B., Edelstein, L., and Hogan, N., “Robot-aided neurorehabilitation: from evidence-based to science-based rehabilitation” Topics in Stroke Rehabilitation, Vol. 8, No. 4, pp. 54–70, 2002.

    Article  Google Scholar 

  16. Hogan, N., Krebs, H. I., Charnnarong, J., Srikrishna, P., and Sharon, A., “MIT-MANUS: a workstation for manual therapy and training. I” IEEE Int. Workshop Robot Hum. Commun., pp. 161–165, 1992.

  17. Reinkensmeyer, D., Hogan, N., Krebs, H., Lehman, S., and Lum, P., “Rehabilitators, robots, and guides: New tools for neurological rehabilitation” New York: Springer-Verlag, pp. 516–533, 2000.

  18. Loureiro, R., Amirabdollahian, F., Topping, M., Driessen, B., and Harwin, W., “Upper limb robot mediated stroke therapy-GENTLE/s approach” Autonomous Robots, Vol. 15, No. 1, pp. 35–51, 2003.

    Article  Google Scholar 

  19. Korein, J. U., “Geometric investigation of reach” Ph.D. Thesis, Computer and Information Scince, University of Pennsylvania, 1985.

  20. Kreutz-Delgado, K., Long, M., and Seraji, H., “Kinematic analysis of 7-DOF manipulators” The International Journal of Robotics Research, Vol. 11, No. 5, pp. 469–481, 1992.

    Article  Google Scholar 

  21. Tolani, D., Goswami, A., and Badler, N. I., “Real-time inverse kinematics techniques for anthropomorphic limbs” Graphical Models, Vol. 62, No. 5, pp. 353–388, 2000.

    Article  MATH  Google Scholar 

  22. Fu, K. S., Gonzalez, R. C., and Lee, C. S. G., “Robotics: Control, Sensing, Vision, and Intelligence” McGraw-Hill, 1987.

  23. Perry, J. C., Powell, J. M., and Rosen, J., “Isotropy of an upper limb exoskeleton and the kinematics and dynamics of the human arm” Applied Bionics and Biomechanics, Vol. 6, No. 2, pp. 175–191, 2009.

    Article  Google Scholar 

  24. Nakamura, Y., “Advanced Robotics: Redundancy and Optimization” Addison-Wesley Pub. Co., 1991.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byoung Gook Loh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loh, B.G., Rosen, J. Kinematic analysis of 7 degrees of freedom upper-limb exoskeleton robot with tilted shoulder abduction. Int. J. Precis. Eng. Manuf. 14, 69–76 (2013). https://doi.org/10.1007/s12541-013-0011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-013-0011-4

Keywords

Navigation