Skip to main content
Log in

A dynamic model of humanoid robots using the analytical method

  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper presents a new approach to analyzing dynamic models of humanoid robots. This new approach is divided into an unconstrained system that applies the principle of Lagrangian dynamics and a constrained system that applies Gauss’ principle. Constrained motion is important in the design and analysis of humanoid robots. In this paper, the central issue in the determination of the constrained system is considered to be the determination of this constraint factor. Using the fundamental equation described by the proposed approach, the constraint equation can easily be generated. Based upon the fundamental equation, the dynamic model of the humanoid robot is explained as divided by the sagittal and frontal planes. The suggested approach simplifies designing dynamic models of humanoid robots which will obey the constrained system whether or not they are constrained, holonomic, or open chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu, R., Udwadia, F. E., Moore, J. and Kalaba, R., “Lagrange’s Problem without Lagrange Multipliers: The Holonomic Case,” Nonlinear World, Vol. 1, pp. 229–243, 1994.

    MATH  MathSciNet  Google Scholar 

  2. Udwadia, F. E., “Equations of Motion for Constrained Multibody Systems and their Control,” Journal of Optimization Theory and Applications, Vol. 127, No. 3, pp. 627–638, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  3. Peters, J., Mistry, M., Udwadia, F., Nakanishi, J. and Schaal, S., “A Unifying Framework for Robot Control with Redundant DOFs,” Autonomous Robots, Vol. 24, No. 1, pp. 1–12, 2008.

    Article  Google Scholar 

  4. Udwadia, F. E., “A New Perspective on the Tracking Control of Nonlinear Structural and Mechanical Systems,” Proc. of the Royal Society, Mathematical, Physical and Engineering Sciences, Vol. 459, No. 2035, pp. 1783–1800, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. Udwadia, F. E. and Kalaba, R. E., “On the Foundations of Analytical Dynamics,” International Journal of Non-linear Mechanics, Vol. 37, No. 6, pp. 1079–1090, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  6. Udwadia, F. E., “Equations of Motion for Mechanical Systems: a unified approach,” International Journal of Nonlinear Mechanics, Vol. 31, No. 66, pp. 951–958, 1997.

    Google Scholar 

  7. Udwadia, F. E. and Kalaba, R. E., “On Motion,” Journal of the Franklin Institute, Vol. 330, No. 3, pp. 571–577, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  8. Udwadia, F. E. and Kalaba, R. E., “A New Perspective on Constrained Motion,” Proceedings of the Royal Society of London, Series A, Vol. 439, No. 1906, pp. 407–410, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  9. Gauss, C. F., “Ueber ein neues algemeines Grundgesetz der Mechanik (Engl: On a novel, general fundamental law for mechanics),” Journal fuer die reine und angewandte Mathematik (Journal of pure and applied mathematics), Vol. 4, pp. 232–235, 1829.

    Article  MATH  Google Scholar 

  10. Golliday, C. and Jr. Hemami, H., “An approach to analyzing biped locomotion dynamics and designing robot locomotion controls,” IEEE Transactions on Automatic Control, Vol. 22, No. 6, pp. 963–972, 1977.

    Article  Google Scholar 

  11. Agrawal, A. and Agrawal, S. K., “An Approach to Identify Joint Motions for Dynamically Stable Walking,” Transactions of ASME, Journal of Mechanical Design, Vol. 128, No. 3, pp. 649–653, 2006.

    Article  Google Scholar 

  12. Oh, S.-Y. and Orin, D., “Dynamic computer simulation of multiple closed-chain robotic mechanisms,” Proc. of IEEE International Conference on Robotics and Automation, Vol. 3, pp. 15–20, 1986.

    Google Scholar 

  13. Mitobe, K., Mori, N., Nasu, Y. and Adachi, N., “Control of a Biped Walking Robot during the Double Support Phase,” Autonomous Robots, Vol. 4, No. 3, pp. 287–296, 1997.

    Article  Google Scholar 

  14. Ortega, R. and Spong, M., “Stabilization of underactuated mechanical systems using interconnection and damping assignment,” IEEE Transactions on Automatic Control, Vol. 47, No. 8, pp. 1218–1233, 2000.

    Article  MathSciNet  Google Scholar 

  15. Hurmuzlu, Y., “Dynamics and Control of Bipedal Robots,” Springer, Vol. 230, pp. 105–117, 1998.

    Google Scholar 

  16. Agrawal, A. and Agrawal, S. K., “Effect of gravity balancing on biped stability,” Proc. of IEEE International Conference on Robotics and Automation, Vol. 4, pp. 4228–4233, 2004.

    Google Scholar 

  17. Vukobratovic, M., Potkonjak, V. and Tzafestas, S., “Human and humanoid dynamics,” Journal of Intelligent and Robotic Systems, Vol. 41, No. 1, pp. 65–84, 2004.

    Article  Google Scholar 

  18. Hurmuzlu, Y., Génot, F. and Brogliato, B., “Modeling, stability and control of biped robots: A general framework,” Automatica, Vol. 40, No. 10, pp. 1647–1664, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  19. Takanishi, A., Lim, H.-O., Tsuda, M. and Kato, I., “Realization of dynamic biped walking stabilized by trunk motion on a sagittally uneven surface,” Proc. of IROS IEEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications, Vol. 1, pp. 323–330, 1990.

    Article  Google Scholar 

  20. VukobratoviĆ, M., Potkonjak, V., Babković, K. and Borovac, B., “Simulation model of general human and humanoid motion,” Multibody System Dynamics, Vol. 17, No. 1, pp. 71–96, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  21. Hirukawa, H., Kajita, S., Kanehiro, F., Kaneko, K. and Isozumi, T., “The human-size humanoid robot that can walk, lie down and get up,” The International Journal of Robotics Research, Vol. 24, No. 9, pp. 755–769, 2005.

    Article  Google Scholar 

  22. Tingshu, H., Zongli, L., Abel, M. F. and Allaire, P. E., “Human gait modeling: dealing with holonomic constraints,” Proc. of American Control conference, Vol. 3, pp. 2296–2301, 2004.

  23. Caux, S. and Zapata, R., “Modeling and control of biped robot dynamics,” Robotica, Vol. 17, No. 4, pp. 413–426, 1999.

    Article  Google Scholar 

  24. Udwadia, F. E. and Kalaba, R. E., “Analytical Dynamics: A New Approach,” Cambridge University Press, 1996.

  25. Krishchenko, A., Tkachev, S. and Fetisov, D., “Planar walking control for a five-link biped robot,” Computational Mathematics and Modeling, Vol. 18, No. 2, pp. 176–191, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  26. Kim, J., Kim, C., Lee, J., Kwon, Y., Eom, G., Tak, G. and Hong, J., “Human postural control against external force perturbation to the high back,” Int. J. Prec. Eng. Manuf., Vol. 10, No. 4, pp. 147–151, 2009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangyong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Cho, C., Choi, M. et al. A dynamic model of humanoid robots using the analytical method. Int. J. Precis. Eng. Manuf. 11, 67–75 (2010). https://doi.org/10.1007/s12541-010-0008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-010-0008-1

Keywords

Navigation