Skip to main content
Log in

Mechanical and Microstructural Characterization of the Bond Interface Formed in Diffusion Welding of CoCrNi Medium Entropy Alloy (MEA) and AISI 304 Stainless Steel Under Various Processing Parameters

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

CoCrNi medium entropy alloy (MEA) recently gained a lot of attention from the scientific community due to its excellent mechanical properties at cryogenic temperatures. AISI 304 stainless steel is also a commonly used material in cryogenic environments. Therefore, the main objective of this research was to join CoCrNi MEA with AISI 304 stainless steel to obtain combinatorial properties for cryogenic applications. Vacuum diffusion welding process was utilized under different processing parameters. Three levels of welding temperatures and bonding time were selected and the influence of these parameters were investigated using microstructural characterization. Electron microprobe analysis, electron backscattered diffraction, and SEM with EDX analysis were used in the analysis of bond interface regions. At low welding temperature and time, weld discontinuities were formed which were drastically suppressed when both the parameters increased. Formation of IMCs was also found along with the bond interface and was significantly reduced upon increasing welding temperature and bonding time. Moreover, at higher parametric values thick bond interface was formed and it was concluded that its development was mainly due to the diffusion of Fe atoms. The quality of the bond interface was determined through shear testing and its fractography was also executed to correlate the processing parameters with the joint’s shear strength. Diffusivities and activation energies of the constituent elements were also calculated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Article  Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Article  CAS  Google Scholar 

  3. J.-P. Liu, J.-X. Chen, T.-W. Liu, C. Li, Y. Chen, L.-H. Dai, Superior strength-ductility CoCrNi medium-entropy alloy wire. Scripta Mater. 181, 19–24 (2020)

    Article  CAS  Google Scholar 

  4. J.-W. Yeh, Alloy design strategies and future trends in high-entropy alloys. JOM 65(12), 1759–1771 (2013)

    Article  CAS  Google Scholar 

  5. F.D.C. Garcia Filho, R.O. Ritchie, M.A. Meyers, S.N. Monteiro, Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. J. Mater. Res. Technol. 17, 1868–1895 (2022)

    Article  CAS  Google Scholar 

  6. B. Gludovatz, A. Hohenwarter, K.V.S. Thurston, H. Bei, Z. Wu, E.P. George, R.O. Ritchie, Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7(1), 10602 (2016)

    Article  CAS  Google Scholar 

  7. D. Xu, M. Wang, T. Li, X. Wei, Y. Lu, A critical review of the mechanical properties of CoCrNi-based medium-entropy alloys. Microstructures 2, 2022001 (2022)

    Article  Google Scholar 

  8. Z. Wu, H. Bei, F. Otto, G.M. Pharr, E.P. George, Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014)

    Article  CAS  Google Scholar 

  9. C. Stephan-Scherb, W. Schulz, M. Schneider, S. Karafiludis, G. Laplanche, High-temperature oxidation in dry and humid atmospheres of the equiatomic CrMnFeCoNi and CrCoNi high- and medium-entropy alloys. Oxid. Met. 95(1), 105–133 (2021)

    Article  CAS  Google Scholar 

  10. N.K. Adomako, J.H. Kim, Y.T. Hyun, High-temperature oxidation behaviour of low-entropy alloy to medium- and high-entropy alloys. J. Therm. Anal. Calorim. 133(1), 13–26 (2018)

    Article  CAS  Google Scholar 

  11. C. Lu, T.-N. Yang, K. Jin, G. Velisa, P. Xiu, Q. Peng, F. Gao, Y. Zhang, H. Bei, W.J. Weber, L. Wang, Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. J. Nucl. Mater. 524, 60–66 (2019)

    Article  CAS  Google Scholar 

  12. I. Moravcik, N.S. Peighambardoust, A. Motallebzadeh, L. Moravcikova-Gouvea, C. Liu, J.M. Prabhakar, I. Dlouhy, Z. Li, Interstitial nitrogen enhances corrosion resistance of an equiatomic CoCrNi medium-entropy alloy in sulfuric acid solution. Mater. Charact. 172, 110869 (2021)

    Article  CAS  Google Scholar 

  13. M. Samiuddin, J. Li, A.D. Chandio, M. Muzamil, S.U. Siddiqui, J. Xiong, Diffusion welding of CoCrNi medium entropy alloy (MEA) and SUS 304 stainless steel at different bonding temperatures. Weld. World 65(11), 2193–2206 (2021)

    Article  Google Scholar 

  14. S. Li, X. Sun, Y. Du, Y. Peng, Y. Chen, Z. Li, J. Xiong, J. Li, Microstructure and mechanical properties of diffusion-bonded CoCrNi-based medium-entropy alloy to DD5 single-crystal superalloy joint. Crystals 11(9), 1127 (2021)

    Article  Google Scholar 

  15. S. Li, Y. Peng, Y. Du, L. Yuan, J. Xiong, J. Li, Microstructural characteristics and mechanical properties of IC10 superalloy and (CoCrNi)94Al3Ti3 MEA joint brazed using NiCrSiB filler. Mater. Charact. 189, 111964 (2022)

    Article  CAS  Google Scholar 

  16. Y. Du, Z. Li, J. Xiong, Y. Chen, S. Li, J. Li, J. Dong, Diffusion bonding of FGH 98 and CoCrNi-based medium-entropy alloy: microstructure evolution and mechanical tests. Crystals 11(10), 1158 (2021)

    Article  CAS  Google Scholar 

  17. M. Samiuddin, J. Li, Sun X. Xiong, J, Diffusion welding of CoCrNi medium-entropy alloy (MEA) and SUS 304 stainless steel using different interlayers. Metall. Res. Technol. 119(3), 312 (2022)

    Article  CAS  Google Scholar 

  18. M. Naeem, H. Zhou, H. He, S. Harjo, T. Kawasaki, S. Lan, Z. Wu, Y. Zhu, X.-L. Wang, Martensitic transformation in CrCoNi medium-entropy alloy at cryogenic temperature. Appl. Phys. Lett. 119(13), 131901 (2021)

    Article  CAS  Google Scholar 

  19. X.-Z. Wang, Y. Wang, Z. Huang, Q. Zhou, H. Wang, Tribocorrosion behavior of CoCrNi medium entropy alloy in simulated seawater. Metals 12(3), 401 (2022)

    Article  CAS  Google Scholar 

  20. M. Samiuddin, L. Jinglong, M.A. Siddiqui, X. Jiangtao, R. Ling, Electrochemical corrosion behavior of CoCrNi medium entropy alloy and SUS-304 stainless steel diffusion welded joints at various bonding temperatures. Phys. Met. Metall. 122(14), 1561–1571 (2022)

    Article  Google Scholar 

  21. S. Kundu, G. Thirunavukarasu, Structure and properties correlation of diffusion bonded joint of duplex stainless steel and Ti–6Al–4V with and without Ni–17Cr–9Fe alloy interlayer. Weld. World 60(4), 793–811 (2016)

    Article  CAS  Google Scholar 

  22. J. Wang, Y. Li, Y. Yin, Interface characteristics in diffusion bonding of Fe3Al with Cr18-Ni8 stainless steel. J. Colloid Interface Sci. 285(1), 201–205 (2005)

    Article  CAS  Google Scholar 

  23. P. Li, S. Wang, Y. Xia, X. Hao, H. Dong, Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to TiAl alloy. J. Mater. Sci. Technol. 45, 59–69 (2020)

    Article  CAS  Google Scholar 

  24. P. Li, C. Li, H. Dong, B. Wu, Y. Ma, C. Zou, Y. Yang, Vacuum diffusion bonding of TC4 titanium alloy to 316 L stainless steel with AlCoCrCuNi2 high-entropy alloy interlayer. J. Alloys Compd. 909, 164698 (2022)

    Article  CAS  Google Scholar 

  25. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61(13), 4887–4897 (2013)

    Article  CAS  Google Scholar 

  26. D.L. Beke, G. Erdélyi, On the diffusion in high-entropy alloys. Mater. Lett. 164, 111–113 (2016)

    Article  CAS  Google Scholar 

  27. D.E. Clark, R.E. Mizia, Diffusion Welding of Alloys for Molten Salt Service—Status Report (Idaho National Laboratory, Idaho Falls, 2012)

    Google Scholar 

  28. L. Chai, S.A. Tassou, A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Therm. Sci. Eng. Progress 18, 100543 (2020)

    Article  Google Scholar 

  29. Sai K. Mylavarapu, Design, fabrication, performance testing, and modeling of diffusion bonded compact heat exchangers in a high-temperature helium test facility, Dissertation, The Ohio State University (2011)

  30. J. Nestell, T.-L. Sham, ASME Code Considerations for the Compact Heat Exchanger (Oak Ridge National Laboratory, Oak Ridge, 2015)

    Book  Google Scholar 

  31. S.R. Aakre, I.W. Jentz, M.H. Anderson, Nuclear code case development of printed-circuit heat exchangers with thermal and mechanical performance testing, in The 6th International Supercritical CO2 Power Cycles Symposium. Pittsburgh, Pennsylvania, USA (2018).

  32. P. Li, H. Sun, S. Wang, X. Hao, H. Dong, Rotary friction welding of AlCoCrFeNi2.1 eutectic high entropy alloy. J. Alloys Compd. 814, 152322 (2020)

    Article  CAS  Google Scholar 

  33. H. Nam, S. Park, E.-J. Chun, H. Kim, Y. Na, N. Kang, Laser dissimilar weldability of cast and rolled CoCrFeMnNi high-entropy alloys for cryogenic applications. Sci. Technol. Weld. Join. 25(2), 127–134 (2019)

    Article  Google Scholar 

  34. J. Guo, C. Tang, G. Rothwell, L. Li, Y.C. Wang, Q. Yang, X. Ren, Welding of high entropy alloys—a review. Entropy (Basel) 21(4), 431 (2019)

    Article  CAS  Google Scholar 

  35. Z.G. Zhu, Y.F. Sun, M.H. Goh, F.L. Ng, Q.B. Nguyen, H. Fujii, S.M.L. Nai, J. Wei, C.H. Shek, Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy. Mater. Lett. 205, 142–144 (2017)

    Article  CAS  Google Scholar 

  36. N. Kashaev, V. Ventzke, N. Stepanov, D. Shaysultanov, V. Sanin, S. Zherebtsov, Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics 96, 63–71 (2018)

    Article  CAS  Google Scholar 

  37. Y.J. Du, J.T. Xiong, F. Jin, S.W. Li, L. Yuan, D. Feng, J.M. Shi, J.L. Li, Microstructure evolution and mechanical properties of diffusion bonding Al5(TiZrHfNb)95 refractory high entropy alloy to Ti2AlNb alloy. Mater. Sci. Eng. A 802, 140610 (2021)

    Article  CAS  Google Scholar 

  38. C. Lin, R.-K. Shiue, S.-K. Wu, J.-Y. Huang, Y.-C. Huang, Brazing of CoCrFeNi and CoCrFeMnNi equiatomic alloys using 70Au-8Pd-22Ni filler foil. Gold Bull. 53(2), 101–109 (2020)

    Article  CAS  Google Scholar 

  39. P. Li, H. Sun, S. Wang, Y. Xia, H. Dong, G. Wen, H. Zhang, Diffusion bonding of AlCoCrFeNi2.1 eutectic high entropy alloy to GH4169 superalloy. Mater. Sci. Eng. A 793, 139843 (2020)

    Article  CAS  Google Scholar 

  40. G. Thirunavukarasu, S. Kundu, B. Mishra, S. Chatterjee, Effect of bonding temperature on interfacial reaction and mechanical properties of diffusion-bonded joint between Ti–6Al–4V and 304 stainless steel using nickel as an intermediate material. Metall. Mater. Trans. A 45(4), 2067–2077 (2013)

    Article  Google Scholar 

  41. M. Zajusz, M. Jawańska, J. Dąbrowa, K. Berent, M. Danielewski, Interdiffusion and diffusion paths in two-phase γ+β|γ+β diffusion couples. Comparison of experimental investigation with theoretical predictions. J. Alloys Compd. 836, 155513 (2020)

    Article  CAS  Google Scholar 

  42. S.K. Kailasam, M.E. Glicksman, A simplified method for calculating the diffusivity matrix in ternary alloys. Acta Mater. 47(3), 905–913 (1999)

    Article  CAS  Google Scholar 

  43. J. Wang, Y.J. Li, Y.S. Yin, Microstructure of a vacum diffusion layer in the joint of Fe–Al alloy with low-carbon steel. Mater. Sci. 41(5), 647–652 (2005)

    Article  CAS  Google Scholar 

  44. F. Silva, J. Santos, R. Gouveia, Dissolution of grain boundary carbides by the effect of solution annealing heat treatment and aging treatment on heat-resistant cast steel HK30. Metals 7(7), 251 (2017)

    Article  Google Scholar 

  45. A. Bjarbo, M. Hattestrand, Complex carbide growth, dissolution, and coarsening in a modified 12 pct chromium steel—an experimental and theoretical study. Metall. Mater. Trans. A 32(1), 19-27 (2001)

    Article  Google Scholar 

  46. S.-X. Li, Y.-N. He, S.-R. Yu, P.-Y. Zhang, Evaluation of the effect of grain size on chromium carbide precipitation and intergranular corrosion of 316L stainless steel. Corros. Sci. 66, 211–216 (2013)

    Article  CAS  Google Scholar 

  47. C.J. Thambiliyagodage, S. Ulrich, P.T. Araujo, M.G. Bakker, Catalytic graphitization in nanocast carbon monoliths by iron, cobalt and nickel nanoparticles. Carbon 134, 452–463 (2018)

    Article  CAS  Google Scholar 

  48. H.J. Goldschmidt, Interstitial Alloy (Springer, New York, 1967), pp. 88–213

    Chapter  Google Scholar 

  49. Y.J. Fang, X.S. Jiang, D.F. Mo, T.F. Song, Z.P. Luo, Microstructure and mechanical properties of the vacuum diffusion bonding joints of 4J29 kovar alloy and 316L stainless steel using pure cobalt interlayer. Vacuum 168, 108847 (2019)

    Article  CAS  Google Scholar 

  50. Y.Y. Zhang, W.J. Yao, W. Sun, J.Y. Wang, X.J. Han, N. Wang, Rapid growth and magnetic properties of Fe7CO3 intermetallic compound. Appl. Mech. Mater. 152–154, 501–506 (2012)

    Google Scholar 

  51. H. Ding, C. Cui, W. Yang, J. Sun, The effect of Tb doping on the magnetic properties and microstructure of a TbNdFeCoB/Fe7Co3 nanocomposite permanent magnet. Mater. Res. Express 7(1), 016112 (2020)

    Article  CAS  Google Scholar 

  52. X. Liu, B. Chen, S. Wu, P. Lin, Y. Ma, S. Tang, Y. Huang, W. Liu, Formation of nano-phase Co3Fe7 intermetallic and its strengthening in Au80Sn20/CrMnFeCoNi solder interface. J. Alloys Compd. 843, 155924 (2020)

    Article  CAS  Google Scholar 

  53. Z.K. Li, H.M. Fu, P.F. Sha, Z.W. Zhu, A.M. Wang, H. Li, H.W. Zhang, H.F. Zhang, Z.Q. Hu, Atomic interaction mechanism for designing the interface of W/Zr-based bulk metallic glass composites. Sci. Rep. 5(1), 8967 (2015)

    Article  CAS  Google Scholar 

  54. R. Bakhtiari, A. Yarmou Shamsabadi, K. Alipour Moradi, Shear strength/microstructure relationship for dissimilar IN738/IN718 TLP joints. Weld. World 64(1), 219–231 (2019)

    Article  Google Scholar 

  55. M. Pouranvari, S.M. Mousavizadeh, Use of Larson–Miller parameter for modeling the progress of isothermal solidification during transient-liquid-phase bonding of IN718 superalloy. Mater. Tehnol. 49(2), 247–251 (2015)

    Article  Google Scholar 

  56. M. Tamura, F. Abe, K. Shiba, H. Sakasegawa, H. Tanigawa, Larson–Miller constant of heat-resistant steel. Metall. Mater. Trans. A 44(6), 2645–2661 (2013)

    Article  CAS  Google Scholar 

  57. K. Maruyama, F. Abe, H. Sato, J. Shimojo, N. Sekido, K. Yoshimi, On the physical basis of a Larson–Miller constant of 20. Int. J. Press. Vessels Pip. 159, 93–100 (2018)

    Article  CAS  Google Scholar 

  58. X.W. Zhu, H.H. Cheng, M.H. Shen, J.P. Pan, Determination of C parameter of Larson–Miller equation for 15CrMo steel. Adv. Mater. Res. 791–793, 374–377 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglong Li or Jiangtao Xiong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samiuddin, M., Li, J., Muzamil, M. et al. Mechanical and Microstructural Characterization of the Bond Interface Formed in Diffusion Welding of CoCrNi Medium Entropy Alloy (MEA) and AISI 304 Stainless Steel Under Various Processing Parameters. Met. Mater. Int. 29, 1421–1440 (2023). https://doi.org/10.1007/s12540-022-01309-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01309-2

Keywords

Navigation