Skip to main content
Log in

Influence of Heat Treatment on Stainless Steel 316L Alloy Manufactured by Hybrid Additive Manufacturing Using Powder Bed Fusion and Directed Energy Deposition

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The present study investigated the effect of heat-treatment on the Stainless Steel 316L (SS316L) hybrid sample fabricated by using Directed Energy Deposition (DED) and Powder Bed Fusion (PBF) Additive Manufacturing (AM) process. The relationship between the microstructure and mechanical properties of the additively manufactured hybrid sample is studied. Further, the additively manufactured SS316L hybrid sample is subjected to different heat treatment conditions namely, stress relief, solution annealing and hot isostatic pressing and the changes happening in the mechanical and metallurgical characteristics of the hybrid sample is studied post heat treatment. From the investigation it is found that the DED process can be effectively used for depositing SS316L structure over the PBF built SS316L substrate. In addition, the mechanical characteristics of the additively manufactured SS316L hybrid sample can be effectively modified through heat treatment. As built SS316L hybrid sample has microhardness of 230.5 HV, ultimate tensile strength of 733 MPa, the yield strength value of 512 MPa. The solution treatment (HT2) of hybrid sample improves the ductility and leads to highest total elongation of 70.1%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AM:

Additive manufacturing

PBF:

Powder bed fusion

SS316L:

Stainless steel 316L

DED:

Directed energy deposition

DMD:

Direct metal deposition

SLM:

Selective laser melting

DMLS:

Direct metal laser sintering

EBSD:

Electron back scattered diagram

FESEM:

Field emission scanning electron microscope

XRD:

X-ray powder diffraction

HAZ:

Heat affected zone

ABS:

As-built sample

HT:

Heat treatment

UTS:

Ultimate tensile strength

TE:

Total elongation

YS:

Yield strength

References

  1. S. Shukla, V. Bajpai, Effect of cryogenic quenching on microstructure and microhardness of Ti-6Al-4V alloy. Mater. Lett. 267, 127532 (2020). https://doi.org/10.1016/j.matlet.2020.127532

    Article  CAS  Google Scholar 

  2. Z. Zhou, S. Wang, J. Li, Y. Li, X. Wub, Y. Zhu, Hardening after annealing in nanostructured 316L stainless steel. Nano Mater. Sci. 2, 80–82 (2020). https://doi.org/10.1016/j.nanoms.2019.12.003

    Article  Google Scholar 

  3. X. Lou, M.A. Othon, R.B. Rebak, Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water. Corros. Sci. 127, 120–130 (2017). https://doi.org/10.1016/j.corsci.2017.08.023

    Article  CAS  Google Scholar 

  4. D. Svetlizky, B. Zheng, A. Vyatskikh, M. Das, S. Bose, A. Bandyopadhyay, J.M. Schoenung, E.J. Lavernia, N. Eliaz, Laser-based directed energy deposition (DED-LB) of advanced materials. Mater. Sci. Eng. A 840, 142967 (2022). https://doi.org/10.1016/j.msea.2022.142967

    Article  CAS  Google Scholar 

  5. Y. Yang, Y. Gong, Qu. Shuoshuo, Y. Rong, Y. Sun, M. Cai, Densification, surface morphology, microstructure and mechanical properties of 316L fabricated by hybrid manufacturing. Int. J. Adv. Manuf Technol. 97, 2687–2696 (2018). https://doi.org/10.1007/s00170-018-2144-1

    Article  Google Scholar 

  6. C. Man, Z. Duan, Z. Cui, C. Dong, D. Kong, T. Liu, S. Chen, X. Wang, The effect of sub-grain structure on intergranular corrosion of 316L stainless steel fabricated via selective laser melting. Mater. Lett. 243, 157–160 (2019). https://doi.org/10.1016/j.matlet.2019.02.047

    Article  CAS  Google Scholar 

  7. Y. Zhou, L. Duan, F. Li, K. Chen, S. Wen, Effect of heat treatment on the microstructure and mechanical property of W/316L multi-material fabricated by selective laser melting. J. Alloys Compd. 890, 161841 (2021). https://doi.org/10.1016/j.jallcom.2021.161841

    Article  CAS  Google Scholar 

  8. Qi. Chao, S. Thomas, N. Birbilis, P. Cizek, P.D. Hodgson, D. Fabijanic, The effect of post-processing heat treatment on the microstructure, residual stress and mechanical properties of selective laser melted 316L stainless steel. Mater. Sci. Eng. A 821, 141611 (2021). https://doi.org/10.1016/j.msea.2021.141611

    Article  CAS  Google Scholar 

  9. K. Benarji, Y. Ravi Kumar, A.N. Jinoop, C.P. Paul, K.S. Bindra, Efect of heat-treatment on the microstructure, mechanical properties and corrosion behaviour of SS 316 structures built by laser directed energy deposition based additive manufacturing. Met. Mater. Intern. 27, 488–499 (2021). https://doi.org/10.1007/s12540-020-00838-y

    Article  CAS  Google Scholar 

  10. E. Tascioglu, Y. Karabulut, Y. Kaynak, Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing. Int. J. Adv. Manuf. Tech. 107, 1947–1956 (2020). https://doi.org/10.1007/s00170-020-04972-0

    Article  Google Scholar 

  11. B. Onuike, A. Bandyopadhyay, Additive manufacturing in repair: Influence of processing parameters on properties of Inconel 718. Mater. Lett. 252, 256–259 (2019). https://doi.org/10.1016/j.matlet.2019.05.114

    Article  CAS  Google Scholar 

  12. F. Haftlang, H.S. Kim, A perspective on precipitation-hardening high-entropy alloys fabricated by additive manufacturing. Mater. Des. 211, 110161 (2021). https://doi.org/10.1016/j.matdes.2021.110161

    Article  CAS  Google Scholar 

  13. S.I. Shakil, N.R. Smith, S.P. Yoder, B.E. Ross, D.J. Alvarado, A. Hadadzadeh, M. Haghshenas, Post fabrication thermomechanical processing of additive manufactured metals: a review. J. Manuf. Proc. 73, 757–790 (2022). https://doi.org/10.1016/j.jmapro.2021.11.047

    Article  Google Scholar 

  14. M. Kumaran, V. Senthilkumar, Experimental characterization of stainless steel 316L alloy fabricated with combined powder bed fusion and directed energy deposition. Weld. World 65, 1373–1388 (2021). https://doi.org/10.1007/s40194-021-01117-z

    Article  CAS  Google Scholar 

  15. Z. Tong, X. Ren, J. Jiao, W. Zhou, Y. Ren, Y. Ye, E.A. Larson, Gu. Jiayang, Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: effect of heat treatment on microstructure, residual stress and mechanical property. J. Alloys Compd. 785, 1144–1159 (2019). https://doi.org/10.1016/j.jallcom.2019.01.213

    Article  CAS  Google Scholar 

  16. ChangJun Chen, K. Yan, L. Qin, M. Zhang, X. Wang, T. Zou, Hu. Zengrong, Effect of heat treatment on microstructure and mechanical properties of laser additively manufactured AISI H13 tool steel. J. Mater. Eng. Perform 26, 5577–5589 (2017). https://doi.org/10.1007/s11665-017-2992-0

    Article  CAS  Google Scholar 

  17. X. Chen, Xu. Jia Li, H.W. Cheng, Z. Huang, Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Mater. Sci. Eng. A 715, 307–314 (2018). https://doi.org/10.1016/j.msea.2017.10.002

    Article  CAS  Google Scholar 

  18. A. Yadollahi, N. Shamsaei, S.M. Thompson, D.W. Seely, Effects of process time interval and heat treatment on the mechanical and microstructural properties of direct laser deposited 316L stainless steel. Mater. Sci. Eng. A 644, 171–183 (2015). https://doi.org/10.1016/j.msea.2015.07.056

    Article  CAS  Google Scholar 

  19. Oh. Wook Jin, W.J. Lee, M.S. Kim, J.B. Jeon, D.S. Shim, Repairing additive-manufactured 316L stainless steel using direct energy deposition. Opt. Laser Techol. 117, 6–17 (2019). https://doi.org/10.1016/j.optlastec.2019.04.012

    Article  CAS  Google Scholar 

  20. D. Kong, C. Dong, X. Ni, L. Zhang, J. Yao, C. Man, X. Cheng, K. Xiao, X. Li, Mechanical properties and corrosion behavior of selective lasermelted 316L stainless steel after different heat treatment processes. J. Mater. Sci. Technol. 35, 1499–1507 (2019). https://doi.org/10.1016/j.jmst.2019.03.003

    Article  CAS  Google Scholar 

  21. T. Ronneberg, C.M. Davies, P.A. Hooper, Revealing relationships between porosity, microstructure and mechanical properties of laser powder bed fusion 316L stainless steel through heat treatment. Mater. Des. 189, 108481 (2020). https://doi.org/10.1016/j.matdes.2020.108481

    Article  CAS  Google Scholar 

  22. M. Godec, S. Malej, D. Feizpour, C. Donik, M. Balazic, D. Klobcar, L. Pambaguian, M. Conradi, A. Kocijan, Hybrid additive manufacturing of Inconel 718 for future space applications. Mater. Charact. 172, 110842 (2021). https://doi.org/10.1016/j.matchar.2020.110842

    Article  CAS  Google Scholar 

  23. E. Brandl, D. Greitemeier, Microstructure of additive layer manufactured Ti–6Al–4V after exceptional post heat treatments. Mater. Lett. 81, 84–87 (2012). https://doi.org/10.1016/j.matlet.2012.04.116

    Article  CAS  Google Scholar 

  24. X. Lou, M. Song, P.W. Emigh, M.A. Othon, P.L. Andresen, On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing. Corr. Sci. 128, 140–153 (2017). https://doi.org/10.1016/j.corsci.2017.09.017

    Article  CAS  Google Scholar 

  25. F.C. Pinto, L.S. Aota, I.R. Souza Filho, D. Raabe, H.R.Z. Sandim, Recrystallization in non-conventional microstructures of 316L stainless steel produced via laser powder-bed fusion: effect of particle coarsening kinetics. J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-021-06859-1

    Article  Google Scholar 

  26. M. Laleh, A.E. Hughes, Xu. Wei, P. Cizek, M.Y. Tan, Unanticipated drastic decline in pitting corrosion resistance of additively manufactured 316L stainless steel after high-temperature post-processing. Corros. Sci. 165, 108412 (2020). https://doi.org/10.1016/j.corsci.2019.108412

    Article  CAS  Google Scholar 

  27. B. Vrancken, L. Thijs, J.-P. Kruth, J. Van Humbeeck, Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties. J. Alloys Compd. 541, 177–185 (2012). https://doi.org/10.1016/j.jallcom.2012.07.022

    Article  CAS  Google Scholar 

  28. B. Barkia, P. Aubry, P. Haghi-Ashtiani, T. Auger, L. Gosmain, F. Schuster, H. Maskrot, On the origin of the high tensile strength and ductility of additively manufactured 316L stainless steel: multiscale investigation. J. Mater. Sci. Technol. 41, 209–218 (2020). https://doi.org/10.1016/j.jmst.2019.09.017

    Article  CAS  Google Scholar 

  29. B. Blinna, F. Krebsa, M. Leyb, R. Teutschb, T. Becka, Determination of the influence of a stress-relief heat treatment and additively manufactured surface on the fatigue behavior of selectively laser melted AISI 316L by using efficient short-time procedures. Int. J. Fatigue 131, 105301 (2020). https://doi.org/10.1016/j.ijfatigue.2019.105301

    Article  CAS  Google Scholar 

  30. J.R.O. Leo, S. Pirfo Barroso, M.E. Fitzpatrick, M. Wang, Z. Zhou, Microstructure, tensile and creep properties of an austenitic ODS 316L steel. Mater. Sci. Eng. A 749, 158–165 (2019). https://doi.org/10.1016/j.msea.2019.02.014

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Central Manufacturing Technology Institute (CMTI), Department of Additive Manufacturing, Government of India. The authors thank Mr. A.R.Vinod, Scientist-C, and Mr. B.N. Manjunath, Scientist-B of AM lab, CMTI for their help during sample preparation.

Funding

The article titled “Influence of heat treatment on stainless steel 316L alloy manufactured by hybrid additive manufacturing using powder bed fusion and directed energy deposition” is our original work and this has not been sent anywhere for its publication. The article may be published in your esteemed journal after its review. No funding agencies/organizations are involved in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Senthilkumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumaran, M., Senthilkumar, V. Influence of Heat Treatment on Stainless Steel 316L Alloy Manufactured by Hybrid Additive Manufacturing Using Powder Bed Fusion and Directed Energy Deposition. Met. Mater. Int. 29, 467–484 (2023). https://doi.org/10.1007/s12540-022-01225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01225-5

Keywords

Navigation