Skip to main content
Log in

Effect of Preheating Temperature on Microstructural and Mechanical Properties of Inconel 718 Fabricated by Selective Laser Melting

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Various studies related to additive manufacturing (AM) have been conducted with Ni-based superalloy and multiscale investigations of widely used Inconel 718 superalloy have been actively performed with the selective laser melting (SLM) method. The formation of defects and thermal residual stress during the SLM process could particularly affect product quality and life-time. Thus, to optimize the SLM process condition for Inconel 718 boasting the minimum of deteriorating properties, the microstructural study was conducted with various energy densities and preheating temperatures. The SLM process condition over 99.9% of density was established and the change of microstructural and mechanical characteristics were confirmed according to the preheating temperature from 50 to 150 °C. The fraction of the low angle grain boundary (LAGB) and the stored strain energy per unit volume gradually decreased as the preheating temperature increased. In particular, while maintaining the mechanical properties, the thermal residual stress in the direction perpendicular to the building direction decreased under the half value of yield strength which could induce deformation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D.F. Paulonis, J.J. Schirra, in Proceedings of 5th International Symposium on Superalloys 718, 625, 706, and Derivatives, ed. by E.A. Loria. Superalloys 2001, Pittsburgh, 17-20 June 2001 (TMS, Pittsburgh, 2001), pp. 13–23

  2. T.M. Pollock, S. Tin, J. Propul. Power. 22, 361 (2006)

  3. Q. Jia, D. Gu, J. Alloy. Compd. 585, 713 (2014)

  4. C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Appl. Phys. Rev. 2, 041101 (2015)

  5. P.K. Gokuldoss, S. Kolla, J. Eckert, Materials. 10, 672 (2017)

  6. M. Zhang, C. Liu, X. Shi, X. Chen, C. Chen, J. Zuo, J. Lu, S. Ma, Appl. Sci. 6, 304 (2016)

  7. L. Scime, J. Beuth, Addit. Manuf. 29, 100830 (2019)

  8. W.R. Kim, G.B. Bang, J.H. Park, T.W. Lee, B.S. Lee, S.M. Yang, G.H. Kim, K. Lee, H.G. Kim, J. Mater. Res. Technol. 9, 12834 (2020)

  9. L. Mugwagwa, D. Dimitrov, S. Matope, I. Yadroitsev, Procedia Manuf. 21, 92 (2018)

  10. P. Mercelis, J.-P. Kruth, Rapid Prototyping J. 12, 254 (2006)

  11. C. Li, Z.Y. Liu, X.Y. Fang, Y.B. Guo, Procedia CIRP 71, 348 (2018)

  12. D. Buchbinder, W. Meiners, N. Pirch, K. Wissenbach, J. Schrage, J. Laser. Appl. 26, 012004 (2014)

  13. J.H. Yi, J.W. Kang, T.J. Wang, X. Wang, Y.Y. Hu, T. Feng, Y.L. Feng, P.Y. Wu, J. Alloy. Compd. 786, 481 (2019)

  14. W. Xiong, L. Hao, Y. Li, D. Tang, Q. Cui, Z. Feng, C. Yan, Mater. Design 170, 107697 (2019)

  15. R. Kumar, G.S. Brar, Int. J. Sci. Res. Sci. Technol. 3, 201 (2017)

  16. B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, Y. Shi, Front. Mech. Eng. 10, 111 (2015)

  17. K.V. Yang, P. Rometsch, T. Jarvis, J. Rao, S. Cao, C. Davies, X. Wu, Mater. Sci. Eng. A 712, 166 (2018)

  18. Y.J. Liu, S.J. Li, H.J. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang, Acta Mater. 113, 56 (2016)

  19. S.A. Khairallah, A.T. Amderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

  20. R. Mertens, S. Dadbakhsh, J. Van Humbeeck, J.-P. Kruth, Procedia CIRP 74, 5 (2018)

  21. K. Kempem, L. Thijs, B. Vrancken, S. Buls, J. Van Humbeeck, J.-P. Kruth, in Proceedings of 24th Annual International Solid Freeform Fabrication Symposium, ed. by D.L. Bourell. Austin, 12-14 August 2013 (University of Texas, Austin, 2013), pp. 131-139

  22. J. Song, Y. Chew, G. Bi, X. Yao, B. Zhang, J. Bai, S.K. Moon, Mater. Design 137, 286 (2018)

  23. E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, T. Kurzynowski, Mater. Sci. Eng. A 639, 647 (2015)

  24. V.A. Popovich, E.V. Borisov, A.A. Popovich, V.Sh. Sufiiarov, D.V. Masaylo, L. Alzina, Mater. Design 131, 12 (2017)

  25. H. Wu, D. Zhang, B. Yang, C. Chen, Y. Li, K. Zhou, L. Jiang, R. Liu, J. Mater. Sci. Technol. 36, 7 (2020)

  26. J.-P. Choi, G.-H. Shin, S. Yang, D.-Y. Yang, J.-S. Lee, M. Brochu, J.-H. Yu, Powder Technol. 310, 60 (2017)

  27. J. Liu, J.G. Morris, Metall. Mater. Trans. A 34, 951 (2003)

  28. D.A. Porter, K.E. Eastering, M. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC press, Boca Raton, 2010), pp. 108–109

  29. R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, A.J. Böttger, Acta Mater. 61, 1592 (2013)

  30. M. Kobayashi, Y. Takayama, H. Kato, Mater. Trans. 45, 3247 (2004)

  31. Y. Takayama, J.A. Szpunar, Mater. Trans. 45, 2316 (2004)

  32. Q. Liu, D.J. Jensen, N. Hansen, Acta Mater. 46, 5819 (1998)

  33. D.M. Bond, M.A. Zikry, Addit. Manuf. 32, 101059 (2020)

  34. N. El-Bagoury, T. Matsuba, K. Yamamoto, H. Miyahara, K. Ogi, Mater. Trans. 46, 2478 (2005)

  35. W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan, Y. Shi, Scripta Mater. 118, 13 (2016)

  36. C. Dharmendra, A. Hadadzadeh, B.S. Amirkhiz, G.D. Janaki Ram, M. Mohammadi, Addit. Manuf. 30, 100872 (2019)

  37. D. Deng, R.L. Peng, H. Brodin, J. Moverare, Mater. Sci. Eng. A 713, 294 (2018)

  38. G.A. Rao, M. Srinivas, D.S. Sarma, Mater. Sci. Eng. A 383, 201 (2004)

  39. P.L. Blackwell, J. Mater. Process. Tech. 170, 240 (2005)

  40. J. Strößner, M. Terock, U. Glatzel, Adv. Eng. Mater. 17, 1099 (2015)

  41. K.S. Kumar, H. Van Swygenhoven, S. Surech, Acta Mater. 51, 5743 (2003)

  42. S. Zhang, X. Lin, L. Wang, X. Yu, Y. Hu, H. Yang, L. Lei, W. Huang, Mater. Sci. Eng. A 812, 141145 (2021)

  43. K.N. Amato, S.M. Gaytan, L.E. Murr, E. Martinez, P.W. Shindo, J. Hernandez, S. Collins, F. Medina, Acta Mater. 60, 2229 (2012)

  44. S. Holland, X. Wang, J. Chen, W. Cai, F. Yan, L. Li, J. Alloy. Compd. 784, 182 (2019)

  45. T. Simson, A. Emmel, A. Dwars, J. Böhm, Addit. Manuf. 17, 183 (2017)

  46. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, W. Huang, Opt. Laser Technol. 43, 208 (2011)

  47. H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, Mater. Sci. Eng. A 695, 211 (2017)

  48. H. Ali, H. Ghadbeigi, K. Mumtaz, Int. J. Adv. Manuf. Tech. 97, 2621 (2018)

  49. L. Wang, X. Jiang, Y. Zhu, Z. Ding, X. Zhu, J. Sun, B. Yan, Adv. Mater. Sci. Eng. 7184039 (2018)

Download references

Acknowledgements

 This work was partly supported by Korea Institute of Industrial Technology as “Development of in-situ thermal residual stress reduction system and technology for metal additive manufacturing (KITECH EO-20-0001). and Korea Evaluation Institute of Industrial Technology(KEIT) grant funded by the Korea government(MOTIE) (No.20011298, Development of superalloy powder and parts manufacturing technology for additive manufacturing).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Won Rae Kim or Hyung Giun Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JH., Bang, G.B., Lee, KA. et al. Effect of Preheating Temperature on Microstructural and Mechanical Properties of Inconel 718 Fabricated by Selective Laser Melting. Met. Mater. Int. 28, 2836–2848 (2022). https://doi.org/10.1007/s12540-022-01169-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01169-w

Keywords

Navigation