Skip to main content
Log in

Developing a High-Strength Al–Mg–Si Alloy with Improved Electrical Conductivity by a Novel ECAP Route

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper investigated the microstructure, tensile and electrical properties of an equal channel angular pressed 6063 Al alloy at temperatures ranging from room temperature (RT) to 300 ℃. Additionally, a two-step temperature schedule (TST) was applied to improve the combined property of the low-alloyed Al–Mg–Si alloy. The results suggested that only processing at RT and TST led to a reduction of the grain size and an increase of strength with increasing number of passes, whereas four-pass processing at TST condition produced a better grain refinement and higher strength compared to the RT counterpart. Detailed analysis reveals that apart from the grain refinement, high-density dislocations and formation of nanoscale precipitates play the dominant roles in strengthening. These microstructural features provide the four-pass TST sample exceptional increase in strength about 67 MPa compared to RT counterpart. Besides, precipitation of solutes in form of numerous nanoscale precipitates can purify the Al matrix in the TST samples, resulting in the improved electrical conductivity as compared to RT sample. The TST method as a new strategy can improve strength and electrical conductivity by controlling the nanosized precipitates in an ultrafine-grained structure, which indeed provides an opportunity for low-alloyed Al–Mg–Si alloys to obtain the better combination properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci 45, 103 (2000)

    Article  CAS  Google Scholar 

  2. M. Cabibbo, Mater. Sci. Eng. A 785, 139348 (2020)

    Article  CAS  Google Scholar 

  3. O. Sitdikov, R. Garipova, E. Avtokratova, O. Mukhametdinova, M. Markushev, J. Alloy. Compd. 746, 520 (2018)

    Article  CAS  Google Scholar 

  4. D.C.C. Magalhães, A.M. Kliauga, M.F. Hupalo, O.M. Cintho, C.A. Della Rovere, M. Ferrante, V.L. Sordi, Mater. Sci. Eng. A 768, 138485 (2019)

    Article  Google Scholar 

  5. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer, G. Sha, Acta Mater. 162, 19 (2019)

    Article  CAS  Google Scholar 

  6. OSh. Sitdikov, E.V. Avtokratova, R.I. Babicheva, Phys. Met. Metallogr. 110, 153 (2010)

    Article  Google Scholar 

  7. A. Yamashita, D. Yamaguchi, Z. Horita, T.G. Langdon, Mater. Sci. Eng. A 287, 100 (2000)

    Article  Google Scholar 

  8. X. Sauvage, E.V. Bobruk, MYu. Murashkin, Y. Nasedkina, N.A. Enikeev, R.Z. Valiev, Acta Mater. 98, 355 (2015)

    Article  CAS  Google Scholar 

  9. X. Sauvage, M.Y. Murashkin, R.Z. Valiev, Kovove Mater. 49, 11 (2011)

    CAS  Google Scholar 

  10. W. Xu, X.C. Liu, X.Y. Li, K. Lu, Acta Mater. 182, 207 (2020)

    Article  CAS  Google Scholar 

  11. H.J. Roven, M. Liu, J.C. Werenskiold, Mater. Sci. Eng. A 483, 54 (2008)

    Article  Google Scholar 

  12. M. Cabibbo, E. Santecchia, P. Mengucci, T. Bellezze, A. Viceré, Mater. Sci. Eng. A 716, 107 (2018)

    Article  CAS  Google Scholar 

  13. M.Y. Murashkin, I. Sabirov, A.E. Medvedev, N.A. Enikeev, W. Lefebvre, R.Z. Valiev, X. Sauvage, Mater. Design 90, 433 (2016)

    Article  CAS  Google Scholar 

  14. A. Mohammadi, N.A. Enikeev, MYu. Murashkin, M. Arita, K. Edalati, Acta Mater 203, 116503 (2021)

    Article  CAS  Google Scholar 

  15. W. Chrominski, M. Kulczyk, M. Lewandowska, K.J. Kurzydlowski, Mater. Sci. Eng. A 609, 80 (2014)

    Article  CAS  Google Scholar 

  16. A. Yousefi, A.R. Eivani, S.M.A. Boutorabi, H.R. Jafarian, Mater. Sci. Eng. A 713, 180 (2018)

    Article  CAS  Google Scholar 

  17. H. Yang, K. Li, Y. Bu, J. Wu, Y. Fang, L. Meng, J. Liu, H. Wang, Scripta Mater. 195, 113741 (2021)

    Article  CAS  Google Scholar 

  18. J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang, J. Mater. Sci. Technol. 35, 742 (2019)

    Article  CAS  Google Scholar 

  19. R.Z. Valiev, M.Y. Murashkin, I. Sabirov, Scripta Mater. 76, 13 (2014)

    Article  CAS  Google Scholar 

  20. K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, J.M. Schoenung, Acta Mater. 62, 141 (2014)

    Article  CAS  Google Scholar 

  21. P. Frint, M.F.-X. Wagner, Acta Mater. 176, 306 (2019)

    Article  CAS  Google Scholar 

  22. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon, Acta Mater. 45, 4733 (1997)

    Article  CAS  Google Scholar 

  23. W. Yang, M. Wang, R. Zhang, Q. Zhang, X. Sheng, Scripta Mater. 62, 705 (2010)

    Article  CAS  Google Scholar 

  24. S. Pogatscher, H. Antrekowitsch, H. Leitner, A.S. Sologubenko, P.J. Uggowitzer, Scripta Mater. 68, 158 (2013)

    Article  CAS  Google Scholar 

  25. W. Yang, L. Huang, R. Zhang, M. Wang, Z. Li, Y. Jia, R. Lei, X. Sheng, J. Alloy. Compd. 514, 220 (2012)

    Article  CAS  Google Scholar 

  26. W. Chrominski, M. Lewandowska, Acta Mater. 103, 547 (2016)

    Article  CAS  Google Scholar 

  27. W. Yang, S. Ji, L. Huang, X. Sheng, Z. Li, M. Wang, Mater. Charact. 94, 170 (2014)

    Article  CAS  Google Scholar 

  28. Y.W. Weng, Z.H. Jia, L.P. Ding, S.J. Muraishi, X.Z. Wu, Q. Liu, J. Alloy. Compd. 767, 81 (2018)

    Article  Google Scholar 

  29. M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, S.H. Seyyedein, Prog. Nat. Sci.: Mater. Int. 26, 182 (2016)

    Article  CAS  Google Scholar 

  30. G. Sha, K. Tugcu, X.Z. Liao, P.W. Trimby, M.Y. Murashkin, R.Z. Valiev, S.P. Ringer, Acta Mater. 63, 169 (2014)

    Article  CAS  Google Scholar 

  31. K. Majchrowicz, Z. Pakieła, W. Chrominski, M. Kulczyk, Mater. Charact. 135, 104 (2018)

    Article  CAS  Google Scholar 

  32. M.H. Mulazimoglu, R.A.L. Drew, J.E. Gruzelski, J. Mater. Sci. Lett. 8, 297 (1989)

    Article  CAS  Google Scholar 

  33. T. Hu, K. Ma, T.D. Topping, J.M. Schoenung, E.J. Lavernia, Acta Mater. 61, 2163 (2013)

    Article  CAS  Google Scholar 

  34. T. Huang, L. Shuai, A. Wakeel, G. Wu, N. Hansen, X. Huang, Acta Mater. 156, 369 (2018)

    Article  CAS  Google Scholar 

  35. O. Myhr, Acta Mater. 49, 65 (2001)

    Article  CAS  Google Scholar 

  36. D. Bardel, M. Perez, D. Nelias, A. Deschamps, C.R. Hutchinson, D. Maisonnette, T. Chaise, J. Garnier, F. Bourlier, Acta Mater. 62, 129 (2014)

    Article  CAS  Google Scholar 

  37. W. Guo, J. Su, W. Lu, C.H. Liebscher, C. Kirchlechner, Y. Ikeda, F. Körmann, X. Liu, Y. Xue, G. Dehm, Acta Mater. 185, 45 (2020)

    Article  CAS  Google Scholar 

  38. G.K. Williamson, W.H. Hall, Acta Mater. 1, 22 (1953)

    Article  CAS  Google Scholar 

  39. H. Wang, H. Geng, D. Zhou, K. Niitsu, O. Muránsky, D. Zhang, Mater. Sci. Eng. A 771, 138613 (2020)

    Article  CAS  Google Scholar 

  40. H. Asgharzadeh, A. Simchi, H.S. Kim, Mater. Sci. Eng. A 528, 3981 (2011)

    Article  Google Scholar 

  41. J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang, J. Alloy. Compd. 769, 96 (2018)

    Article  CAS  Google Scholar 

  42. N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, G.I. Raab, R.Z. Valiev, Mater. Sci. Eng. A 554, 105 (2012)

    Article  CAS  Google Scholar 

  43. J.P. Hou, Q. Wang, Z.J. Zhang, Y.Z. Tian, X.M. Wu, H.J. Yang, X.W. Li, Z.F. Zhang, Mater. Design 132, 148 (2017)

    Article  CAS  Google Scholar 

  44. Z. Zhang, D.L. Chen, Scripta Mater. 54, 1321 (2006)

    Article  CAS  Google Scholar 

  45. Y. Harai, Y. Ito, Z. Horita, Scripta Mater. 58, 469 (2008)

    Article  CAS  Google Scholar 

  46. D. Setman, E. Schafler, E. Korznikova, M.J. Zehetbauer, Mater. Sci. Eng. A 493, 116 (2008)

    Article  Google Scholar 

  47. Y. Miyajima, S.-Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Philos. Mag. 90, 4475 (2010)

    Article  CAS  Google Scholar 

  48. J. Čížek, M. Janeček, T. Vlasák, B. Smola, O. Melikhova, R.K. Islamgaliev, S.V. Dobatkin, Mater. Trans. 60, 1533 (2019)

    Article  Google Scholar 

  49. A.S. Karolik, A.A. Luhvich, J. Phys.: Condens. Matter 6, 873 (1994)

    CAS  Google Scholar 

  50. G. Lin, Z. Zhang, H. Wang, K. Zhou, Y. Wei, Mater. Sci. Eng. A 650, 210 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51874091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyan Ban.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Ban, C. Developing a High-Strength Al–Mg–Si Alloy with Improved Electrical Conductivity by a Novel ECAP Route. Met. Mater. Int. 28, 2513–2528 (2022). https://doi.org/10.1007/s12540-021-01152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01152-x

Keywords

Navigation