Skip to main content
Log in

Species Content Effect on the Rejuvenation Degree of CuZr Metallic Glasses Under Thermal-Pressure Treatments

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Rejuvenation is a process devoted to the structural excitation of metallic glasses (MGs), ultimately leading to enhanced plasticity. In this work, thermal-pressure treatments were performed on Cu\(_{100-x}\)Zr\(_{x}\) MGs using molecular dynamics simulations and the rejuvenation degree was explored by means of compression tests and structural characterization. MGs with high Zr content presented increased rejuvenation than their Cu-rich counterparts. This behavior is attributed to the large populations of liquid-like polyhedra promoted by high contents of Zr species, which favor the deformation and re-arrangement process of the more centrosymmetric polyhedra during rejuvenation. Overall, our results indicate that thermal-pressure treatments are more effective at larger contents of Zr atoms, offering new insights in the fabrication of MGs with tailored properties.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. N. Amigo, F. Urbina, F. Valencia, Comp. Mater. Sci. 184, 109941 (2020)

  2. N.Amigo, F. Valencia, Comp. Mater. Sci. 198, 110681 (2021)

  3. Y.Q. Cheng, A.J. Cao, E. Ma, Acta Mater. 57, 3253 (2009)

  4. Y.Q. Cheng, E. Ma, H.W. Sheng, Phys. Rev. Lett. 102, 245501 (2009)

  5. J. Ding, M. Asta, R.O. Ritchie, Phys. Rev. B 93, 140204 (2016)

  6. W. Dmowski, S. Gierlotka, Z. Wang, Y. Yokoyama, B. Palosz, T. Egami, Sci. Rep. 7, 6564 (2017)

  7. W. Dmowski, G.H. Yoo, S. Gierlotka, H. Wang, Y. Yokoyama, E.S. Park, S. Stelmakh, T. Egami, Sci. Rep. 10, 9497 (2020)

  8. J. Eckert, J. Das, S. Pauly, C. Duhamel, J. Mater. Res. 22, 285 (2007)

  9. S.D. Feng, K.C. Chan, L. Zhao, S.P. Pan, L. Qi, L.M. Wang, R.P. Liu, Mater. Design 158, 248 (2018)

  10. A.L. Greer, Science 267, 1947 (1995)

  11. W. Guo, R. Yamada, J. Saida, S. Lü, S. Wu, J. Non-Cryst. Solids 498, 8 (2018)

  12. C.C. Hays, C.P. Kim, W.L. Johnson, Phys. Rev. Lett. 84, 2901 (2000)

  13. W.L. Johnson, Curr. Opin. Solid State Mater. Sci. 1, 383 (1996)

  14. Y.H. Kim, K.R. Lim, D.W. Lee, Y.S. Choi, Y.S. Na, Met. Mater. Int. 27, 5108 (2021)

  15. Q.K. Li, M. Li, Mater. Trans. 48, 1816 (2007)

  16. S. Li, P. Huang, F. Wang, Comp. Mater. Sci. 166, 318 (2019)

  17. S. Li, J.C. Zhang, Z.D. Sha, J. Alloy. Compd. 848, 156597 (2020)

  18. Y. Lou, X. Liu, X. Yang, Y. Ge, D. Zhao, H. Wang, L.-C. Zhang, Z. Liu, Intermetallics 118, 106687 (2020)

  19. Y. Lou, S. Xv, Z. Liu, J. Ma, Materials 13, 4397 (2020)

  20. N.N. Medvedev, J. Comput. Phys. 67, 223 (1986)

  21. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Philos. Mag. 89, 967 (2009)

  22. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, J. Appl. Phys. 102, 043501 (2007)

  23. R. Milkus, A. Zaccone, Phys. Rev. B 93, 094204 (2016)

  24. N. Miyazaki, Y.-C. Lo, M. Wakeda, S. Ogata, Appl. Phys. Lett. 109, 091906 (2016)

  25. N. Miyazaki, M. Wakeda, Y.-J. Wang, S. Ogata, npj Comput. Mater. 2, 16013 (2016)

  26. J. Pan, Y.P. Ivanov, W.H. Zhou, Y. Li, A.L. Greer, Nature 578, 559 (2020)

  27. J. Pan, Y.X. Wang, Q. Guo, D. Zhang, A.L. Greer, Y. Li, Nat. Commun. 9, 560 (2018)

  28. K.-W. Park, Y. Shibutani, M.L. Falk, B.-J. Lee, J.-C. Lee, Scripta Mater. 63, 231 (2010)

  29. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

  30. R. Raghavan, P. Murali, U. Ramamurty, Metall. Mater. Trans. A 39, 1573 (2008)

  31. Y. Ritter, K. Albe, J. Appl. Phys. 111, 103527 (2012)

  32. W. Ryu, R. Yamada, J. Saida, NPG Asia Mater. 12, 52 (2020)

  33. J. Shen, Y.J. Huang, J.F. Sun, J. Mater. Res. 22, 3067 (2007)

  34. Y. Shibazaki, R. Yamada, J. Saida, Y. Kono, M. Wakeda, K. Itoh, M. Nishijima, K. Kimoto, Commun. Mater. 1, 53 (2020)

  35. F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48, 2923 (2007)

  36. A. Stukowski, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

  37. M. Telford, Mater. Today 7, 36 (2004)

  38. M. Wakeda, J. Saida, Sci. Technol. Adv. Mater. 20, 632 (2019)

  39. B. Wang, L. Luo, F. Dong, L. Wang, H. Wang, F. Wang, L. Luo, B. Su, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 45, 198 (2020)

  40. M. Wang, H. Liu, J. Li, Q. Jiang, W. Yang, C. Tang, J. Non-Cryst. Solids 535, 119963 (2020)

  41. M. Wang, H. Liu, J. Mo, Y. Zhang, Z. Chen, C. Yin, W. Yang, Comp. Mater. Sci. 155, 493 (2018)

  42. T. Wen, Y. Sun, B. Ye, L. Tang, Z. Yang, K.-M. Ho, C.-Z. Wang, N. Wang, J. Appl. Phys. 123, 045108 (2018)

  43. P. Xue, S. Pauly, W. Gan, S. Jiang, H. Fan, Z. Ning, Y. Huang, J. Sun, J. Mater. Sci. Technol. 35, 2221 (2019)

  44. A. Zaccone, E. Scossa-Romano, Phys. Rev. B 83, 184205 (2011)

  45. Z.-D. Zhu, E. Ma, J. Xu, Intermetallics 46, 164 (2014)

Download references

Acknowledgements

Authors thanks the Fondo Nacional de Investigaciones Científicas y Tecnológicas (FONDECYT, Chile) under Grants #11200038 (NA), #1190662 and #11190484 (FV). FV thanks the Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia AFB180001. Powered@NLHPC: This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).

Author information

Authors and Affiliations

Authors

Contributions

N.A.: Conceptualization, Software, Investigation, Methodology, Formal analysis, Writing—review and editing—original draft. F.V.: Software, Investigation, Writing—review and editing.

Corresponding author

Correspondence to Nicolás Amigo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amigo, N., Valencia, F.J. Species Content Effect on the Rejuvenation Degree of CuZr Metallic Glasses Under Thermal-Pressure Treatments. Met. Mater. Int. 28, 2068–2074 (2022). https://doi.org/10.1007/s12540-021-01119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01119-y

Keywords

Navigation