Skip to main content
Log in

Impact of Heating Rate on the Tribological and Corrosion Properties of AISI 52100 Bearing Steel Consolidated via Spark Plasma Sintering

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigates the influence of heating rate on the tribological and corrosion properties of 52100 bearing steel samples consolidated via spark plasma sintering. The consolidation was conducted at different heating rates of 50, 100, 200, 300, and 400 °C/min and the thermomechanical properties of the resulting samples were characterized. Ball-on-disc tribological tests and electrochemical techniques were used to evaluate the wear and corrosion resistance, respectively. The results showed that an increased heating rate positively affects the thermomechanical and tribological properties of 52100 bearing steel. The sintered samples exhibited a low coefficient of friction (between 0.4 and 0.56) and a low wear rate (between 1.4 and 1.8 × 10−6 mm3/Nm) at heating rates between 100 and 400 °C/min. Furthermore, the corrosion resistance of the samples gradually drops above the heating rate of 100 °C/min. The samples can be ranked in the order of decreasing corrosion resistance thus: 100 > 200 > 300 > 400 > 50 °C/min. The improved corrosion resistance of the sample sintered at 100 °C/min can be attributed to its refined crystal size and high density.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from the wear track of sample H5

Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. A. Rahbar-Kelishami, A. Abdollah-Zadeh, M.M. Hadavi, R.A. Seraj, A.P. Gerlich, Appl. Surf. Sci. 316, 501 (2014)

    Article  CAS  Google Scholar 

  2. E. Jimenez-Melero, R. Blondé, M.Y. Sherif, V. Honkimäki, N.H. Van Dijk, Acta Mater. 61, 1154 (2013)

    Article  CAS  Google Scholar 

  3. F.A.P. Fernandes, J. Gallego, C.A. Picon, G. Tremiliosi Filho, L.C. Casteletti, Surf. Coat. Technol. 279, 112 (2015)

    Article  CAS  Google Scholar 

  4. J. Xie, A.T. Alpas, D.O. Northwood, Mater. Sci. Eng. A 393, 42 (2005)

    Article  CAS  Google Scholar 

  5. H.K.D.H. Bhadeshia, Prog. Mater. Sci. 57, 268 (2012)

    Article  CAS  Google Scholar 

  6. W. Herr, E. Broszeit, Surf. Coat. Tech. 97, 335 (1997)

    Article  CAS  Google Scholar 

  7. B.L. Strahin, D.D. Shreeram, G.L. Doll, JOM 69, 1160 (2017)

    Article  CAS  Google Scholar 

  8. E. Türedi, M. Yilmaz, V. Senol, Arch. Foundry Eng. 17, 222 (2017)

    Article  Google Scholar 

  9. U. Şen, M. Uzun, Ş Şen, Adv. Mater. Res. 445, 643 (2012)

    Article  CAS  Google Scholar 

  10. I.M. Makena, M.B. Shongwe, M.M. Ramakokovhu, M.L. Lethabane, Procedia Manuf. 7, 708 (2017)

    Article  Google Scholar 

  11. Z.A. Munir, D.V. Quach, M. Ohyanagi, J. Am. Ceram. Soc. 94, 1 (2011)

    Article  CAS  Google Scholar 

  12. M. Tokita, Adv. Sci. Technol. 63, 322 (2010)

    Article  CAS  Google Scholar 

  13. Z. Shen, M. Johnsson, Z. Zhao, M. Nygren, J. Am. Ceram. Soc. 85, 1921 (2002)

    Article  CAS  Google Scholar 

  14. N. Saheb, Z. Iqbal, A. Khalil, A.S. Hakeem, N. Al-Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, J. Nanomater. 2012, 983470 (2012)

    Article  Google Scholar 

  15. M. Shahedi Asl, A. Sabahi Namini, A. Motallebzadeh, M. Azadbeh, Mater. Chem. Phys. 203, 266 (2018)

    Article  CAS  Google Scholar 

  16. M. Tokita, in Handbook of Advanced Ceramics-Materials, Applications, Processing, and Properties, 2nd edn., ed by. S. Somiya (Academic Press, Cambridge, 2013), p. 1149

  17. M. Tokita, J. Soc. Powder Technol. Japan 30, 790 (1993)

    Article  CAS  Google Scholar 

  18. M. Tokita, J. High Temp. Soc. 31, 215 (2005)

    CAS  Google Scholar 

  19. Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, J. Mater. Sci. 41, 763 (2006)

    Article  CAS  Google Scholar 

  20. S. Grasso, Y. Sakka, G. Maizza, Sci. Technol. Adv. Mater. 10, 053001 (2009)

    Article  CAS  Google Scholar 

  21. P. Klimczyk, M.E. Cura, A.M. Vlaicu, I. Mercioniu, P. Wyzga, L. Jaworska, S.-P. Hannula, J. Eur. Ceram. Soc. 36, 1783 (2016)

    Article  CAS  Google Scholar 

  22. A.Y. Adesina, A.S. Hakeem, M.U. Azam, B.A. Ahmed, A.B. Ibrahim, M.A. Ehsan, A.A. Sorour, J. Mater. Res. Technol. 9, 14645 (2020)

    Article  CAS  Google Scholar 

  23. E. Macía, A. García-Junceda, M. Serrano, M. Hernández-Mayoral, L.A. Diaz, M. Campos, J. Nucl. Mater. 518, 190 (2019)

    Article  CAS  Google Scholar 

  24. Y. Shan, X. Wei, X. Sun, E. Torresani, E.A. Olevsky, J. Xu, J. Am. Ceram. Soc. 102, 662 (2019)

    Article  CAS  Google Scholar 

  25. S. Xie, R. Li, T. Yuan, L. Zhou, M. Zhang, M. Wang, P. Niu, P. Cao, C. Chen, Mater. Charact. 154, 169 (2019)

    Article  CAS  Google Scholar 

  26. M.B. Shongwe, M.M. Ramakokovhu, S. Diouf, M.O. Durowoju, B.A. Obadele, R. Sule, M.L. Lethabane, P.A. Olubambi, J. Alloy. Compd. 678, 241 (2016)

    Article  CAS  Google Scholar 

  27. S.-J. Oh, B.-C. Kim, M.-C. Suh, I.-J. Shon, S.-J. Lee, Arch. Metall. Mater. 64, 863 (2019)

    CAS  Google Scholar 

  28. J. Chávez, L. Olmos, O. Jimenez, F. Alvarádo-Hernandez, H. Flores-Zñiga, J.P. Camarillo-Garcia, S.J. Guevara-Martínez, J. Mater. Res. Technol. 9, 9328 (2020)

    Article  CAS  Google Scholar 

  29. N. Murayama, W. Shin, J. Ceram. Soc. Japan 108, 799 (2000)

    Article  CAS  Google Scholar 

  30. B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, J. Eur. Ceram. Soc. 29, 323 (2009)

    Article  CAS  Google Scholar 

  31. A. Snyder, Z. Bo, S. Hodson, T. Fisher, L. Stanciu, Mater. Sci. Eng. A 538, 98 (2012)

    Article  CAS  Google Scholar 

  32. K. Hu, X. Li, S. Qu, Y. Li, Metall. Mater. Trans. A 44, 4323 (2013)

    Article  CAS  Google Scholar 

  33. W.-M. Guo, J. Vleugels, G.-J. Zhang, P.-L. Wang, O.V. der Biest, Scripta Mater. 62, 802 (2010)

    Article  CAS  Google Scholar 

  34. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  Google Scholar 

  35. A.Y. Adesina, Z.M. Gasem, A.S. Mohammed, Arab. J. Sci. Eng. 44, 10355 (2019)

    Article  CAS  Google Scholar 

  36. A. Ramesh, S.N. Melkote, Int. J. Mach. Tools Manuf. 48, 402 (2008)

    Article  Google Scholar 

  37. T. Larimian, V. Chaudhary, M.U.F. Khan, R.V. Ramanujan, R.K. Gupta, T. Borkar, Intermetallics 129, 107035 (2021)

    Article  CAS  Google Scholar 

  38. G. Tan, D. Tang, D. Dastan, A. Jafari, P.B. Silva, X. Yin, Mat. Sci. Semicon. Proc. 122, 105506 (2021)

    Article  CAS  Google Scholar 

  39. G. Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q. Chu, P.B. Silva, X. Yin, Ceram. Int. 47, 17153 (2021)

    Article  CAS  Google Scholar 

  40. L. Liu, K. Morita, T.S. Suzuki, B.-N. Kim, Ceramics 4, 56 (2021)

    Article  CAS  Google Scholar 

  41. T. Reddyhoff, A. Schmidt, H. Spikes, Tribol. Lett. 67, 22 (2019)

    Article  CAS  Google Scholar 

  42. H. Dong, B. Wen, R. Melnik, Sci. Rep. 4, 7037 (2014)

    Article  CAS  Google Scholar 

  43. A.S. Hakeem, F. Patel, N. Minhas, A. Malkawi, Z. Aleid, M.A. Ehsan, H. Sharrofna, A. Al Ghanim, J. Mater. Res. Technol. 12, 870 (2021)

    Article  CAS  Google Scholar 

  44. A. Du, Y. Yang, Y. Qin, G. Yang, Mater. Manuf. Process. 28, 66 (2013)

    Article  CAS  Google Scholar 

  45. E. Broitman, Tribol. Lett. 65, 23 (2017)

    Article  Google Scholar 

  46. G. Pintaude, A. Sinatora, A new method for hardness calculation using instrumented indentation testing, in Proceedings of the 17th International Congress of Mechanical Engineering (COBEM), (Sao Paulo, 2003), pp. 10–14

  47. T. Venkateswaran, D. Sarkar, B. Basu, J. Am. Ceram. Soc. 88, 691 (2005)

    Article  CAS  Google Scholar 

  48. L. Zhou, G. Liu, Z. Han, K. Lu, Scripta Mater. 58, 445 (2008)

    Article  CAS  Google Scholar 

  49. G.M. Uddin, A.A. Khan, M. Ghufran, Z.U.R. Tahir, M. Asim, M. Sagheer, M. Jawad, J. Ahmad, M. Irfan, B. Waseem, Adv. Mech. Eng. 10, 1 (2018)

    Article  CAS  Google Scholar 

  50. I. Gunes, A. Cicek, K. Aslantas, F. Kara, Trans. Indian Inst. Met. 67, 909 (2014)

    Article  CAS  Google Scholar 

  51. S. Sen, U. Sen, Ind. Lubr. Tribol. 61, 146 (2009)

    Article  Google Scholar 

  52. K. Kobs, H. Dimigen, Appl. Phys. Lett. 57, 1622 (1990) 

    Article  CAS  Google Scholar 

  53. L. Moravcikova-Gouvea, I. Moravcik, M. Omasta, J. Veselý, J. Cizek, P. Minárik, J. Cupera, A. Záděra, V. Jan, I. Dlouhy, Mater. Charact. 159, 110046 (2020)

    Article  CAS  Google Scholar 

  54. A.Y. Adesina, Z. Iqbal, F.A. Al-Badour, Z.M. Gasem, J. Mater. Res. Technol. 8, 436 (2019)

    Article  CAS  Google Scholar 

  55. J. Musil, F. Kunc, H. Zeman, H. Poláková, Surf. Coat. Tech. 154, 304 (2002) 

    Article  CAS  Google Scholar 

  56. S.A. Wohaibi, A.S. Mohammed, T. Laoui, A.S. Hakeem, A.Y. Adesina, F. Patel, Materials 16, 920 (2019)

    Article  CAS  Google Scholar 

  57. M.U. Azam, B.A. Ahmed, A.S. Hakeem, H.M. Irshad, T. Laoui, M.A. Ehsan, F. Patel, F.A. Khalid, J. Mater. Res. Technol. 8, 5066 (2019)

    Article  CAS  Google Scholar 

  58. Y. Wang, T.C. Lei, C.Q. Gao, Tribol. Int. 23, 47 (1990)

    Article  CAS  Google Scholar 

  59. ASTM G59-97, Standard Test Method for Conducting Potentiodynamic Polarization Resistance Measurements (ASTM International, West Conshohocken, 2014)

  60. P. Wang, L. Ma, X. Cheng, X. Li, J. Alloy. Compd. 857, 158258 (2021)

    Article  CAS  Google Scholar 

  61. M. Soleimani, M. Hamed, C. Dehghanian, Mater. Sci. Express 7, 016522 (2020)

    Article  CAS  Google Scholar 

  62. J.R. Scully, Electrochemical methods for laboratory corrosion testing, in Corrosion Testing and Evaluation: Silver Anniversary Volume, ed. by R. Baboian, S. Dean (ASTM International, West Conshohocken, 1990), p. 351

  63. A. Bautista, A. González-Centeno, G. Blanco, S. Guzmán, Mater. Charact. 59, 32 (2008)

    Article  CAS  Google Scholar 

  64. C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, Techn. Rep. 004/83 (Solartron Analytical, Farnborough, 1980)

  65. G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, V. Vivier, J. Electrochem. Soc. 154, C108 (2007)

    Article  CAS  Google Scholar 

  66. V. Jothi, A.Y. Adesina, A.M. Kumar, N. Al-Aqeeli, J.S.N. Ram, Prog. Org. Coat. 138, 105396 (2020)

    Article  CAS  Google Scholar 

  67. T. Bellezze, G. Giuliani, A. Viceré, G. Roventi, Corros. Sci. 130, 12 (2018)

    Article  CAS  Google Scholar 

  68. D. Klotz, Electrochem. Commun. 98, 58 (2019)

    Article  CAS  Google Scholar 

  69. M.F. Khan, A.Y. Adesina, Z.M. Gasem, Mater. Corros. 70, 281 (2019)

    Article  CAS  Google Scholar 

  70. A.M. Kumar, R.S. Babu, I.B. Obot, A.Y. Adesina, A. Ibrahim, A.L.F. de Barros, J. Mater. Eng. Perform. 27, 2306 (2018)

    Article  CAS  Google Scholar 

  71. K. Jüttner, Electrochim. Acta 35, 1501 (1990)

    Article  Google Scholar 

  72. A.Y. Adesina, Z.M. Gasem, A. Madhan Kumar, Metall. Mater. Trans. B 48, 1321 (2017)

    Article  CAS  Google Scholar 

  73. A.Y. Adesina, Z.M. Gasem, A.M. Kumar, Mater. Corros. 70, 1601 (2019)

    Article  CAS  Google Scholar 

  74. K.D. Ralston, N. Birbilis, C.H.J. Davies, Scripta Mater. 63, 1201 (2010)

    Article  CAS  Google Scholar 

  75. A. Toloei, V. Stoilov, D. Northwood, in Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition (IMECE). San Diego, 15–21 November, 2013. Volume 2B: Advanced Manufacturing, V02BT02A054 (ASME, New York, 2013)

  76. S.K. Kim, I.J. Park, D.Y. Lee, J.G. Kim, J. Appl. Electrochem. 43, 507 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank King Fahd University of Petroleum and Minerals (KFUPM, Dhahran, Saudi Arabia) for providing all support to this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akeem Yusuf Adesina or Abbas Saeed Hakeem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adesina, A.Y., Hussain, M., Hakeem, A.S. et al. Impact of Heating Rate on the Tribological and Corrosion Properties of AISI 52100 Bearing Steel Consolidated via Spark Plasma Sintering. Met. Mater. Int. 28, 2180–2196 (2022). https://doi.org/10.1007/s12540-021-01113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01113-4

Keywords

Navigation