Skip to main content
Log in

Effect of Annealing and Crack Orientation on Fatigue Crack Propagation of Ti64 Alloy Fabricated by Direct Energy Deposition Process

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of annealing condition and crack orientation on fatigue crack propagation (FCP) behavior of DED (direct energy deposition)-processed Ti–6Al–4V (Ti64) specimens were studied. It was found that the FCP resistance of Ti64 increased significantly with annealing, particularly above β transus temperature, due to the microstructural coarsening inducing less damage accumulation at the tip of crack. The FCP behavior of as-built and as-annealed DED Ti64 specimens was isotropic with crack direction either parallel or perpendicular to building direction. The detailed micrographic and fractographic analyses on FCP-tested specimens suggested that the presence of largely elongated β grain boundaries did not affect the advance of crack.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.R. Boyer, Mater. Sci. Eng. A 213, 103 (1996)

    Article  Google Scholar 

  2. P. Singh, H. Pungotra, N.S. Kalsi, Mater. Today Proc. 4, 8971 (2017)

    Article  CAS  Google Scholar 

  3. G. Lutjering, Mater. Sci. Eng. A 243, 32 (1998)

    Article  Google Scholar 

  4. J. Sieniawski, W. Ziaja, K. Kubiak, M. Motyka, Rapid Rrototyp. J. 18, 259 (2013)

    Google Scholar 

  5. F.C. Canpbell, Manufacturing Technology for Aerospace Structural Materials (Elsevier, Nederland, 2011), p. 153

    Google Scholar 

  6. G.R. Yoder, L.A. Cooley, T.W. Crooker, J. Eng. Mater. Technol. 99, 313 (1977)

    Article  CAS  Google Scholar 

  7. W. Seo, D. Jeong, D. Lee, H. Sung, Y. Kwon, S. Kim, Met. Mater. Int. 23, 648 (2017)

    Article  CAS  Google Scholar 

  8. G.R. Yoder, L.A. Cooley, T.W. Crooker, Metall. Trans. A 9, 1413 (1978)

    Article  Google Scholar 

  9. C.R.M. Afonso, G.T. Aleixo, A.J. Ramirez, R. Caram, Mater. Sci. Eng. C 27, 908 (2007)

    Article  CAS  Google Scholar 

  10. M.T. Jovanovic, S. Tadic, S. Zec, Z. Miskovic, I. Bobic, Mater. Design 27, 192 (2006)

    Article  CAS  Google Scholar 

  11. D. Jeong, Y. Kwon, M. Goto, S. Kim, Int. J. Mech. Mater. Eng. 12, 1 (2017)

    Article  CAS  Google Scholar 

  12. G.R. Yoder, L.A. Cooley, T.W. Crooker, Eng. Fract. Mech. 11, 805 (1979)

    Article  CAS  Google Scholar 

  13. ASTM Standard F2792-12a, Standard terminology for additive manufacturing technologies (ASTM International, West Conshohocken, 2015) 

    Google Scholar 

  14. B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love, Addit. Manuf. 32, 199003 (2020)

    Google Scholar 

  15. R. Anderson, J. Terrell, J. Schneider, S. Thompson, P. Gradl, Metall. Mater. Trans. B 50, 1921 (2019)

    Article  CAS  Google Scholar 

  16. B. Dutta and F.H. (Sam) Froes, Met. Powder Report 72, 96 (2017)

    Article  Google Scholar 

  17. Y.L. Hu, X. Lin, Y.L. Li, S.Y. Zhang, X.H. Gao, F.G. Liu, X. Li, W.D. Huang, Mater. Design 186, 108359 (2020)

    Article  CAS  Google Scholar 

  18. Y. Byun, S. Lee, S. Seo, J. Yeom, S. Kim, N. Kang, J. Hong, Met. Mater. Int. 24, 1213 (2018)

    Article  CAS  Google Scholar 

  19. B.E. Carroll, T.A. Palmer, A.M. Beese, Acta Mater. 87, 309 (2015)

    Article  CAS  Google Scholar 

  20. G. Suprobo, A.A. Ammar, N. Park, E. Baek, S. Kim, Met. Mater. Int. 25, 1428 (2019)

    Article  CAS  Google Scholar 

  21. J.N. Rousseau, A. Bois-Brochu, C. Blais, Addit. Manuf. 23, 197 (2018)

    CAS  Google Scholar 

  22. G.P. Dinda, L. Song, J. Mazumder, Metall. Mater. Trans. A 39, 2914 (2007)

    Article  Google Scholar 

  23. O. Oyelola, P. Crawforth, R.M. Saoubi, A.T. Clare, Addit. Manuf. 19, 39 (2018)

    CAS  Google Scholar 

  24. S. Wolff, T. Lee, E. Faierson, K. Ehmann, J. Cao, J. Manuf. Process. 24, 397 (2016)

    Article  Google Scholar 

  25. S.M.J. Razavi, G.G. Bordonaro, P. Ferro, J. Torgersen, F. Berto, Materals 11, 284 (2018)

    Article  Google Scholar 

  26. Y. Ren, X. Lin, Z. Jian, H. Peng, W. Huang, Mater. Sci. Eng. A 819, 141392 (2021)

    Article  CAS  Google Scholar 

  27. H. Ye, F. Le, C. Wei, K. Ye, S. Liu, G. Wang, J. J. Alloy. Compd. 868, 159023 (2021)

    Article  CAS  Google Scholar 

  28. R. Konecna, L. Kunz, A. Baca, G. Nicoletto, Eng. Fract. Mech. 185, 82 (2017)

    Article  Google Scholar 

  29. A.K. Syed, B. Ahmad, H. Guo, T. Machry, D. Eatock, J. Meyer, M.E. Fitzpatrick, X. Zhang, Mater. Sci. Eng. A 755, 246 (2019)

    Article  CAS  Google Scholar 

  30. M.T. Hasib, H.E. Ostergaard, X. Li, J.J. Kruzic, Int. J. Fatigue 142, 105955 (2021)

    Article  Google Scholar 

  31. H. Galarraga, R.J. Warren, D.A. Lados, R.R. Dehoff, M.M. Kirka, Eng. Fract. Mech. 176, 263 (2017)

    Article  Google Scholar 

  32. Y. Xie, M. Gao, F. Wang, C. Zhang, K. Hao, H. Wang, X. Zeng, Mater. Sci. Eng. A 709, 265 (2018)

    Article  CAS  Google Scholar 

  33. ASTM E399-90, Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials (ASTM International, West Conshohocken, 1997)

  34. ASTM E647-00, Standard Test Method for Measurement of Fatigue Crack Growth Rates (ASTM International, West Conshohocken, 2000)

  35. S. Ahn, J. Park, D. Jeong, H. Sung, Y. Kwon, S. Kim, Met. Mater. Int. 24, 327 (2018)

    Article  CAS  Google Scholar 

  36. F.J. Gil, J.M. Manero, M.P. Ginebra, J.A. Planell, Mater. Sci. Eng. A 349, 150 (2003)

    Article  Google Scholar 

  37. M. Hojo, Compos. Sci. Tehchnol. 29, 273 (1987)

    Article  CAS  Google Scholar 

  38. R.O. Ritchie, S. Suresh, C.M. Moss, J. Eng. Mater. Tech. 102, 293 (1980)

    Article  CAS  Google Scholar 

  39. E.O. Hall, Proc. Phys. Soc. B 64, 747 (1951)

    Article  Google Scholar 

  40. J. Lindigkeit, G. Terlinde, A. Gysler, G. Lutjering, Acta Mater. 27, 1717 (1979)

    Article  CAS  Google Scholar 

  41. C.J. Mcmahon Jr., M. Cohen, Acta Mater. 13, 591 (1965)

    Article  CAS  Google Scholar 

  42. C.J. Beevers, R.J. Cooke, H.F. Knott, R.O. Ritchie, Met. Sci. 9, 119 (1975)

    Article  CAS  Google Scholar 

  43. S. Kim, T. Song, H. Sung, S. Kim, Met. Mater. Int. 27, 1383 (2021)

    Article  CAS  Google Scholar 

  44. R.R. Boyer, Adv. Perform. Mater. 2, 349 (1995)

    Article  CAS  Google Scholar 

  45. C. Tan, Q. Sun, G. Zhang, Vacuum 183, 109848 (2021)

    Article  CAS  Google Scholar 

  46. C. Wu, M. Zhan, J. Alloy. Compd. 805, 1144 (2019)

    Article  CAS  Google Scholar 

  47. S. Kim, H. Choi, J. Lee, S. Kim, Int. J. Fatigue 140, 105802 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Industrial Technology Innovation Program (20002700) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Gi Kim or Sangshik Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Oh, H., Kim, . et al. Effect of Annealing and Crack Orientation on Fatigue Crack Propagation of Ti64 Alloy Fabricated by Direct Energy Deposition Process. Met. Mater. Int. 28, 205–215 (2022). https://doi.org/10.1007/s12540-021-01087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01087-3

Keywords

Navigation