Skip to main content
Log in

Modeling and Experimental Investigation of Fracture Behavior of Hot-Rolled Hypereutectoid Si-Mn TRIP Steel: Heat-Treatment Effect

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study aimed to investigate the fracture and hardening behaviors of transformation induced plasticity (TRIP) steel at different heat-treatments using the uniaxial tensile test and the necking correction method to study the effects of various heat treating procedures and strain rates in the microstructural evaluation, mechanical properties, and fracture behavior of the investigated steel. The uniaxial tensile tests were performed on samples heat-treated through different procedures and strain rates in the range of 0.005–5 s−1. It was observed that the strain rate slightly affects the formability of TRIP steel in different heat-treatment procedures. The obtained results showed that the H3 sample in which the samples austenitized at 900 °C for 22 min then soaked at 400 °C for 1 h and finally quenched in oil at 50 °C and cooling at ambient temperature had the highest strain fracture. The nucleation and growth of voids, as well as the dynamic equilibrium between strain hardening and recovery, were reasons for fracture strain increment from 0.005 to 0.1. However, fracture strain decreased at the strain rate of 0.1–5 s−1 due to the decrease of ductility. Also, TRIP steel characterizations were used for modeling the displacement and stress of the anti-roll bar by ANSYS 19.2 parametric language and Solid-Works. The displacement and stress results of TRIP steel were compared to SAE Class 550 and Class 700 grades of steel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.H. Kim, H. Kim, N.J. Kim, Nature 518, 77 (2015)

    Article  CAS  Google Scholar 

  2. P.I. Christodoulou, A.T. Kermanidis, G.N. Haidemenopoulos, D. Krizan, K. Polychronopoulou, Fatigue Fract. Eng. M. 42, 1085 (2019)

  3. B. Seisenbacher, M. Hofinger, G. Winter, F. Grün, Fatigue Fract. Eng. M. 43, 191 (2020)

  4. A.P.P. Mariappa, M.S. Thesis, Design and optimization of anti-roll bar, Kaunas University of Technology (2018)

  5. M.K. Hatami, T. Pardoen, G. Lacroix, P. Berke, P.J. Jacques, T.J. Massart, J. Mech. Phys. Solids 98, 201 (2017)

  6. W. Bleck, X. Guo, Y. Ma, Steel Res. Int. 88, 1700218 (2017)

  7. F.Y. Dong, J.C. Pang, P. Zhang, Q.Q. Duan, Z.F. Zhang, Adv. Eng. Mater. 17, 1675 (2015)

    Article  CAS  Google Scholar 

  8. A. Grajcar, M. Różański, S. Stano, A. Kowalski, J. Mater. Eng. Perform. 23, 3400 (2014)

    Article  CAS  Google Scholar 

  9. B. Ennis, E. Jimenez-Melero, E. Atzema, M. Krugla, M. Azeem, D. Rowley, D. Daisenberger, D. Hanlon, P. Lee, Int. J. Plasticity 88, 126 (2017)

  10. D.P. Escobar, S.S.F. de Dafé, D.B. Santos, J. Mater. Sci. Technol. 4, 162 (2015)

    Google Scholar 

  11. Z. Li, H. Ding, Z. Cai, Mater. Sci. Eng. A 639, 559 (2015)

    Article  CAS  Google Scholar 

  12. Z. Li, D. Wu, ISIJ Int. 46, 121 (2006)

    Article  CAS  Google Scholar 

  13. M. Cai, W. Zhu, N. Stanford, L. Pan, Q. Chao, P.D. Hodgson, Mater. Sci. Eng. A 653, 35 (2016)

    Article  CAS  Google Scholar 

  14. Z. Cai, H. Ding, R. Misra, Z. Ying, Acta Mater. 84, 229 (2015)

    Article  CAS  Google Scholar 

  15. A. Ekberg, B. Åkesson, E. Kabo, Wear 314, 2 (2014)

    Article  CAS  Google Scholar 

  16. J. Du, X. Zhang, B. Liu, Y. Dong, J. Feng, C. Chen, F. Yin, Mater. Chem. Phys. 223, 114 (2019)

    Article  CAS  Google Scholar 

  17. A. Laureys, T. Depover, R. Petrov, K. Verbeken, Mater. Charact. 112, 169 (2016)

    Article  CAS  Google Scholar 

  18. J.R. Rice, D.M. Tracey, J. Mech. Phys. Solids 17, 201 (1969)

    Article  Google Scholar 

  19. F.A. McClintock, J. Appl. Mech. 35, 363 (1968)

    Article  Google Scholar 

  20. A.L. Gurson, ASME. J. Eng. Mater. Technol. 99, 2 (1977)

    Article  Google Scholar 

  21. Y. Zhu, M.D. Engelhardt, Eng. Fract. Mech. 190, 491 (2018)

    Article  Google Scholar 

  22. S. Wu, N. Song, F. Pires, J. Phys. Conf. Ser. 734, 032065 (2016)

  23. S.K. Paul, Comput. Mater. Sci. 56, 34 (2012)

    Article  CAS  Google Scholar 

  24. K.S. Choi, W.N. Liu, X. Sun, M.A. Khaleel, Acta Mater. 57, 2592 (2009)

    Article  CAS  Google Scholar 

  25. D. Morin, O.S. Hopperstad, A. Benallal, Int. J. Fracture 209, 27 (2018)

  26. Z. Marciniak, K. Kuczyński, Int. J. Mech. Sci. 9, 609 (1967)

    Article  Google Scholar 

  27. H. Ding, Z.-Y. Tang, W. Li, M. Wang, D. Song, J. Iron Steel Res. Int. 13, 66 (2006)

  28. J. Chiang, B. Lawrence, J. Boyd, A. Pilkey, Mater. Sci. Eng. A 528, 4516 (2011)

    Article  Google Scholar 

  29. X. Li, Y. Wang, P. Zhang, B. Li, X. Song, J. Chen, Mater. Sci. Eng. A 616, 116 (2014)

    Article  CAS  Google Scholar 

  30. T. Iwamoto, Int. J. Plasticity 20, 841 (2004)

  31. S.K. Paul, A. Kumar, Comput. Mater. Sci. 63, 66 (2012)

    Article  CAS  Google Scholar 

  32. C.P. Nikhare, Mater. Today 5, 261 (2018)

    CAS  Google Scholar 

  33. A. Srivastava, H. Ghassemi-Armaki, H. Sung, P. Chen, S. Kumar, A.F. Bower, J. Mech. Phys. Solids 78, 46 (2015)

    Article  CAS  Google Scholar 

  34. S. Prüger, A. Gandhi, D. Balzani, Eng. Computation. 35, 499 (2018)

  35. G.B. Olson, M. Cohen, Metall. Trans. A 6, 791 (1975)

  36. J. Cai, Ph.D. Thesis, Modelling of phase transformation in hot stamping of boron steel, Imperial College London (2011)

    Google Scholar 

  37. C. Sun, N. Guo, M. Fu, C. Liu, Int. J. Mech. Sci. 110, 108 (2016)

    Article  Google Scholar 

  38. A.K. Srivastava, G. Jha, N. Gope, S. Singh, Mater. Charact. 57, 127 (2006)

    Article  CAS  Google Scholar 

  39. J. Lin, T. Dean, J. Mater. Process. Tech. 167, 354 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Vaseghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanlou, S., Vaseghi, M. & Sameezadeh, M. Modeling and Experimental Investigation of Fracture Behavior of Hot-Rolled Hypereutectoid Si-Mn TRIP Steel: Heat-Treatment Effect. Met. Mater. Int. 28, 1349–1360 (2022). https://doi.org/10.1007/s12540-021-01045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-01045-z

Keywords

Navigation