Skip to main content
Log in

Fabrication of High-Strength Mg–Gd–Nd–Zn–Sn–Zr Alloy via Extrusion and Aging

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A high-strength Mg–9Gd–3Nd–1Zn–1Sn–0.5Zr (wt%) alloy bar was successfully fabricated by extrusion and following aging two-steps processes, during which the alloy′s microstructures were determined to investigate the refinement mechanism during extrusion and to reveal the morphology precipitation behavior of the as-extruded alloy after aging. Based on the characterization of the mechanical properties, the strengthening mechanism of the alloy under different treatment processes had been discussed. Our results showed that the greater the extent of extrusion, the finer the grains and eutectic phase, and crushing and dynamic recrystallization are the refinement mechanisms of the alloy in narrow-zone. After peak-aged treatment at 200 °C, a large number of spherical β′ phase and lamellar precipitated phase had been observed, which replaces the amorphous β" phase of the alloy was under-aged. The ultimate tensile strength, yield strength, and elongation were 462.12 MPa, 391.97 MPa, and 4.2% respectively, and the increase number of the β′ phase and long-period stacking ordered (LPSO) phase were the reason why the strength of the alloy reached the highest value. At the over-aging stage (96 h), the size of the lamellar precipitates and the LPSO was larger than that of the peak-aged, and the spherical β′ phase appeared in peak-aging stage decreased significantly, which reduced its performance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. L. Tonelli, L. Pezzato, P. Dolcet et al., Effects of graphite nano-particle additions on dry sliding behaviour of plasma-electrolytic-oxidation-treated EV31A magnesium alloy against steel in air. Wear 404–405, 122–132 (2018)

    Article  CAS  Google Scholar 

  2. V.G. Tkachenko, K.H. Kim, B.G. Moon et al., Design and microstructural analysis of magnesium alloys for dynamical applications. J. Mater. Sci. 46(14), 4880–4895 (2011)

    Article  CAS  Google Scholar 

  3. C. Blawert, N. Hort, K.U. Kainer et al., Automotive applications of magnesium and its alloys. Trans. Indian Inst. Met. 57(4), 397–408 (2004)

    CAS  Google Scholar 

  4. H.Y. Yang, X.W. Guo, G.H. Wu et al., Electrodeposition of chemically and mechanically protective Al-coatings on AZ91D Mg alloy. Corros. Sci. 53, 381–387 (2011)

    Article  CAS  Google Scholar 

  5. A.J. Carpenter, A.R. Antoniswamy, J.T. Carter et al., A mechanism-dependent material model for the effects of grain growth and anisotropy on plastic deformation of magnesium alloy AZ31 sheet at 450 °C. Acta Mater. 68, 254–266 (2014)

    Article  CAS  Google Scholar 

  6. X.Y. Xia, W.H. Sun, A. Luo et al., Precipitation evolution and hardening in MgSmZnZr alloys. Acta Mater. 111, 335–347 (2016)

    Article  CAS  Google Scholar 

  7. Y. Hu, N. Yu, L.Z. Zhao et al., Effect of Sm on the microstructure and properties of Mg–9Al alloy. Int. J. Cast Met. Res. 30(6), 317–321 (2017)

    Article  CAS  Google Scholar 

  8. H.R.J. Nodooshan, G.H. Wu, W.C. Liu et al., Effect of Gd content on high temperature mechanical properties of Mg–Gd–Y–Zr alloy. Mater. Sci. Eng. A 651, 840–847 (2016)

    Article  CAS  Google Scholar 

  9. X.G. Sun, M. Nouri, Y. Wang et al., Corrosive wear resistance of Mg–Al–Zn alloys with alloyed yttrium. Wear 302(1–2), 1624–1632 (2013)

    Article  CAS  Google Scholar 

  10. Z. Hu, R.L. Liu, S.K. Kairy et al., Effect of Sm additions on the microstructure and corrosion behavior of magnesium alloy AZ91. Corros. Sci. 149, 144–152 (2019)

    Article  CAS  Google Scholar 

  11. W. Rong, Y. Zhang, Y.J. Wu et al., Fabrication of high-strength Mg–Gd–Zn–Zr alloys via differential-thermal extrusion. Mater. Charact. 131, 380–387 (2017)

    Article  CAS  Google Scholar 

  12. X.J. Zhou, C.M. Liu, Y.H. Gao et al., Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn–Zr alloys filled with intragranular LPSO phases. Mater. Charact. 135, 76–83 (2018)

    Article  CAS  Google Scholar 

  13. J.F. Wang, P.F. Song, S. Huang et al., High-strength and good-ductility Mg–RE–Zn–Mn magnesium alloy with long-period stacking ordered phase. Mater. Lett. 93, 415–418 (2013)

    Article  CAS  Google Scholar 

  14. Y.F. Wang, Y.B. Zhang, W. Gao et al., Effect of Zr on the microstructures and mechanical properties of as-extruded Mg–2.3Zn–0.18Y–xZr alloys. Int. J. Mod. Phys. B 31, 16–19 (2017)

    Google Scholar 

  15. P. Cheng, Y.H. Zhao, R.P. Lu et al., Effect of Ti addition on the microstructure and mechanical properties of cast Mg–Gd–Y–Zn alloys. Mater. Sci. Eng. A 708, 482–491 (2017)

    Article  CAS  Google Scholar 

  16. Y. Wang, W. Rong, Y.J. Wu et al., Effects of Mn addition on the microstructures and mechanical properties of the Mg–15Gd–1Zn alloy. J. Alloys Compd. 698, 1066–1076 (2017)

    Article  CAS  Google Scholar 

  17. M. Jiang, X.L. Su, H.X. Li et al., The phase equilibria and thermal stability of the long-period stacking ordered phase in the Mg–Cu–Y system. J. Alloys Compd. 593, 141–147 (2014)

    Article  CAS  Google Scholar 

  18. W.S. Chuang, C.H. Hsieh, J.C. Huang et al., Relation between sample size and deformation mechanism in Mg–Zn–Y 18R-LPSO single crystals. Intermetallics 91, 110–119 (2017)

    Article  CAS  Google Scholar 

  19. J.F. Wang, S.Q. Gao, X.Y. Liu et al., Enhanced mechanical properties and degradation rate of Mg–Ni–Y alloy by introducing LPSO phase for degradable fracturing ball applications. J. Magn. Alloys 8(1), 127–133 (2020)

    Article  CAS  Google Scholar 

  20. C. Xu, T. Nakata, K. Oh-ishi et al., Improving creep property of Mg–Gd–Zn alloy via trace Ca addition. Scr. Mater. 139, 34–38 (2017)

    Article  CAS  Google Scholar 

  21. X.M. Zhang, J.L. Hu, L.Y. Ye et al., Effects of Si addition on microstructure and mechanical properties of Mg–8Gd–4Y–Nd–Zr alloy. Mater. Des. 43, 74–79 (2013)

    Article  CAS  Google Scholar 

  22. X.F. Gu, T. Furuhara, L. Chen et al., Study on the planar segregation of solute atoms in Mg–Al–Gd alloy. Scr. Mater. 150, 45–49 (2018)

    Article  CAS  Google Scholar 

  23. E.F. Emely, Principles of Magnesium Technology, 1st edn., (Pergamon Press, Oxford, 1966), pp.127–55

    Google Scholar 

  24. Q.M. Peng, H.W. Dong, L.D. Wang et al., Aging behavior and mechanical properties of Mg–Gd–Ho alloys. Mater. Charact. 59(8), 983–986 (2007)

    Article  CAS  Google Scholar 

  25. L. Yang, Y. Huang, F. Feyerabend et al., Microstructure, mechanical and corrosion properties of Mg–Dy–Gd–Zr alloys for medical applications. Acta Biomater. 9(10), 8499–8508 (2013)

    Article  CAS  Google Scholar 

  26. T. Kawabata, K. Matsuda, S. Ikeno et al., HRTEM observation of metastable phases in a Mg–15%Gd–6.4%Sc alloy. Mater. Trans. 51, 301–304 (2010)

    Article  CAS  Google Scholar 

  27. X.B. Zheng, W.B. Du, Z.H. Wang et al., Remarkably enhanced mechanical properties of Mg–8Gd–1Er–0.5Zr alloy on the route of extrusion, rolling and aging. Mater. Lett. 212, 155–158 (2018)

    Article  CAS  Google Scholar 

  28. Z.J. Yu, C. Xu, J. Meng et al., Effects of pre-annealing on microstructure and mechanical properties of as-extruded Mg–Gd–Y–Zn–Zr alloy. J. Alloys Compd. 729, 627–637 (2017)

    Article  CAS  Google Scholar 

  29. K.Y. Zheng, J. Dong, X.Q. Zeng et al., Effect of thermo-mechanical treatment on the microstructure and mechanical properties of a Mg–6Gd–2Nd–0.5Zr alloy. Mater. Sci. Eng. A 454–455, 314–321 (2007)

    Article  CAS  Google Scholar 

  30. X.L. Hou, Z.Y. Cao, L. Zhao et al., Microstructure, texture and mechanical properties of a hot rolled Mg–6.5Gd–1.3Nd–0.7Y–0.3Zn alloy. Mater. Des. 34, 776–781 (2011)

    Article  CAS  Google Scholar 

  31. L. Zhang, M. Gong, L.M. Peng et al., Microstructure and strengthening mechanism of a thermomechanically treated Mg–10Gd–3Y–1Sn–0.5Zr alloy. Mater. Sci. Eng. A 565, 262–268 (2013)

    Article  CAS  Google Scholar 

  32. J.J. Gao, J. Fu, N. Zhang et al., Structural features and mechanical properties of Mg–Y–Zn–Sn alloys with varied LPSO phases. J. Alloys Compd. 768, 1029–1038 (2018)

    Article  CAS  Google Scholar 

  33. L. Ye, Y. Liu, D.S. Zhao et al., Effects of Sn on the microstructure and mechanical properties of a hot-extruded Mg–Zn–Y–Sn alloy. Mater. Sci. Eng. A 724, 121–130 (2018)

    Article  CAS  Google Scholar 

  34. M.L. Fornasini, P. Manfrinetti, K.A. Gschneidner et al., GdMg5: a complex structure with a large cubic cell. Acta Crystallogr. C 42(2), 138–141 (1986)

    Article  Google Scholar 

  35. R. Cottam, J. Robson, G. Lorimer et al., Dynamic recrystallization of Mg and Mg–Y alloys: crystallographic texture development. Mater. Sci. Eng. A 485, 375–382 (2008)

    Article  CAS  Google Scholar 

  36. R.L. Goetz, Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scr. Mater. 52(9), 851–856 (2005)

    Article  CAS  Google Scholar 

  37. L. Zheng, C.M. Liu, L. Jin et al., Effect of hot-rolling on microstructures and mechanical properties of extruded Mg–6Gd–3.2Y–xZn–0.5Zr sheet. J. Mater. Eng. Perform. 22, 104–111 (2013)

    Article  CAS  Google Scholar 

  38. W.T. Sun, X.G. Qiao, M.Y. Zheng et al., Altered ageing behaviour of a nanostructured Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr alloy processed by high pressure torsion. Acta Mater. 151, 260–270 (2018)

    Article  CAS  Google Scholar 

  39. C. Xu, M.Y. Zheng, K. Wu et al., Effect of ageing treatment on the precipitation behaviour of Mg–Gd–Y–Zn–Zr alloy. J. Alloys Compd. 550, 50–56 (2013)

    Article  CAS  Google Scholar 

  40. X. Gao, S.M. He, X.Q. Zeng et al., Microstructure evolution in a Mg–15Gd–0.5Zr (wt%) alloy during isothermal aging at 250 °C. Mater. Sci. Eng. A 431(1), 322–327 (2006)

    Article  CAS  Google Scholar 

  41. T. Honma, T. Ohkubo, S. Kamado et al., Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mat. 55(12), 4137–4150 (2007)

    Article  CAS  Google Scholar 

  42. C. Xu, T. Nakata, X.G. Qiao et al., Ageing behavior of extruded Mg–8.2Gd–3.8Y–1.0Zn–0.4Zr (wt%) alloy containing LPSO phase and γ´ precipitates. Sci. Rep. 7, 43391 (2017)

    Article  CAS  Google Scholar 

  43. K. Wen, K. Liu, Z.H. Wang et al., Effect of microstructure evolution on mechanical property of extruded Mg–12Gd–2Er–1Zn–0.6Zr alloys. J. Magn. Alloys 3(1), 23–28 (2015)

    Article  CAS  Google Scholar 

  44. X. Liu, W.Y. Hu, Q.C. Le et al., Microstructures and mechanical properties of high performance Mg–6Gd–3Y–2Nd–0.4Zr alloy by indirect extrusion and aging treatment. Mater. Sci. Eng. A 612(26), 380–386 (2014)

    Article  CAS  Google Scholar 

  45. R. Zhen, Y.S. Sun, F. Xue et al., Effect of heat treatment on the microstructures and mechanical properties of the extruded Mg–11Gd–1Zn alloy. J. Alloys Compd. 550, 273–278 (2013)

    Article  CAS  Google Scholar 

  46. R.G. Li, J.F. Nie, G.J. Huang et al., Development of high-strength magnesium alloys via combined processes of extrusion, rolling and ageing. Scr. Mater. 64(10), 950–953 (2011)

    Article  CAS  Google Scholar 

  47. X.B. Liu, R.S. Chen, E.H. Han et al., Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465(1), 232–238 (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Research and development project of scientific and technological achievements in provincial universities of Heilongjiang provincial department of education(Grant number TSTAU-R2018003), Open research fund of state key laboratory of metastable materials science and technology of Yanshan university (Grant number 202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Yandong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Yu, Y., Qian, J. et al. Fabrication of High-Strength Mg–Gd–Nd–Zn–Sn–Zr Alloy via Extrusion and Aging. Met. Mater. Int. 27, 4182–4194 (2021). https://doi.org/10.1007/s12540-020-00859-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00859-7

Keywords

Navigation