Skip to main content
Log in

Relationship Between Fluid Flow Stability and Submerged Entry Nozzle Port Angle in a Conventional Slab Continuous-Casting Mold

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Fluid flow patterns within a conventional slab continuous-casting mold are closely linked to the port angle of the submerged entry nozzle (SEN). Fluid flow is unstable below a certain port angle, with large fluctuations near the port outlet as well as jet stream oscillation and repeated vortex formation and dissipation within the mold. However, such phenomena are not observed above a certain port angle, at which the flow pattern becomes stable. This behavior was investigated via both numerical simulation and water model experimentation; two different regions were identified with flow patterns varying according to the SEN port angle. In addition, a close quantitative relationship was identified between changes in the port angle and fluid velocity variations. For SEN port angles in the range 0°–15°, the flow velocity in the upper circulation zone oscillated in an unstable manner. For port angles of 20° or more, the flow velocity of the same zone decreased significantly and stabilized. When the gas was injected, the unstable region elongated to 0°–20°. The present study offers insight toward developing a clearer understanding of the complex flow patterns in casting molds, as well as of the conditions necessary for stable flow patterns.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Y. Miki, S. Takeuchi, ISIJ Int. 43, 1548 (2003)

    Article  CAS  Google Scholar 

  2. B.G. Thomas, Iron Steel Technol. 3, 7 (2006)

    Google Scholar 

  3. J. Knoepke, M. Hubbard, J. Kelly, R. Kittridge, J. Lucas, Steelmaking Conference Proceedings, ISS, Warrendale, PA (1994), p. 381

  4. D. Gupta, A.K. Lahiri, Metall. Mater. Trans. B 27, 757 (1996)

    Article  Google Scholar 

  5. A. Ramos-Banderas, R. Sánchez-Pérez, L. Demedices-García, J. Palafox-Ramos, M. Díaz-Cruz, R.D. Morales, Metall. Mater. Trans. B 35, 449 (2004)

    Article  Google Scholar 

  6. X. Huang, B.G. Thomas, F.M. Najjar, Metall. Trans. B 23, 339 (1992)

    Article  Google Scholar 

  7. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, B.G. Thomas, Metall. Mater. Trans. B 38, 63 (2007)

    Article  CAS  Google Scholar 

  8. N. Bessho, R. Yoda, H. Yamasaki, T. Fujii, T. Nozaki, S. Takatori, ISIJ Int. 31, 40 (1991)

    Article  Google Scholar 

  9. S.-M. Cho, S.-H. Kim, B.G. Thomas, ISIJ Int. 54, 845 (2014)

    Article  CAS  Google Scholar 

  10. B.G. Thomas, L.J. Mika, F.M. Najjar, Metall. Trans. B 21, 387 (1990)

    Article  Google Scholar 

  11. J.W. Evans, D. Xu, W.K. Jones, Met. Mater. 4, 1111 (1998)

    Article  CAS  Google Scholar 

  12. D.F. Wu, S.S. Cheng, Acta Metall. Sin. Engl. 21, 341 (2008)

    Article  Google Scholar 

  13. A. Sen, B. Prasad, J.K. Sahu, J.N. Tiwari, IOP Conf. Ser. Mater. Sci. Eng. 75, 012006 (2015)

    Article  Google Scholar 

  14. M. Alam, M. Manzoor, M.I.H. Siddiqui, Int. Rob. Auto J. 4, 14 (2018)

    Google Scholar 

  15. W.V. Gabriel, J.J.M. Peixoto, C.A. Silva, C.A. Silva, I.A. Silva, V. Seshadri, J. Mater. Process. Technol. 245, 232 (2016)

    Article  Google Scholar 

  16. Q. Yuan, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 35, 685 (2004)

    Article  Google Scholar 

  17. R. Singh, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 45, 1098 (2014)

    Article  CAS  Google Scholar 

  18. B.K. Li, Z.Q. Liu, F.S. Qi, F. Wang, G.D. Xu, Acta Metall. Sin. 48, 23 (2012)

    Article  Google Scholar 

  19. R. Chaudhary, B.G. Thomas, S.P. Vanka, Metall. Mater. Trans. B 43, 532 (2012)

    Article  CAS  Google Scholar 

  20. Z. Liu, B. Li, M. Jiang, Metall. Mater. Trans. B 45, 675 (2014)

    Article  CAS  Google Scholar 

  21. S.M. Cho, B.G. Thomas, S.H. Kim, Metall. Mater. Trans. B 47, 3080 (2016)

    Article  CAS  Google Scholar 

  22. Z.Q. Liu, B.K. Li, M.F. Jiang, L. Zhang, G.D. Xu, Acta Metall. Sin. 49, 513 (2013)

    Article  CAS  Google Scholar 

  23. R. Lindken, L. Gui, W. Merzkirch, Chem. Eng. Technol. Ind. Chem. Plant Equipment Process Eng. Biotechnol. 22, 202 (1999)

    CAS  Google Scholar 

  24. W. Rasband, ImageJ (1997). https://imagej.nih.gov/ij/

  25. W. Thielicke, E. Stamhuis, J. Open Res. Softw. 2, e30 (2014)

    Article  Google Scholar 

  26. ANSYS Inc. ANSYS fluent version 15.0 user’s guide (2014)

  27. T.-H. Shih, W.W. Liou, A. Shabbir, Z. Tang, J. Zhu, Comput. Fluids 24, 227 (1995)

    Article  Google Scholar 

  28. H. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite method (Prentice Hall, Upper Saddle River, 2007)

    Google Scholar 

  29. J.Y. Lee, Y.T. Kim, K.W. Yi, Met. Mater. Int. 21, 295 (2015)

    Article  CAS  Google Scholar 

  30. S.M. Cho, B.G. Thomas, S.-H. Kim, ISIJ Int. 58, 1443 (2018)

    Article  CAS  Google Scholar 

  31. M.Y. Zhu, Z.Z. Cai, H.Q. Yu, J. Iron. Steel Res. Int. 20, 6 (2013)

    Article  CAS  Google Scholar 

  32. D. Kang, R.K. Strand, Energy Build. 62, 196 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-woo Yi.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Wh., Yi, Kw. Relationship Between Fluid Flow Stability and Submerged Entry Nozzle Port Angle in a Conventional Slab Continuous-Casting Mold. Met. Mater. Int. 27, 4168–4181 (2021). https://doi.org/10.1007/s12540-020-00813-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00813-7

Keywords

Navigation