Skip to main content
Log in

Effect of Extrusion Temperature on Mechanical Properties of AZ91 Alloy in Terms of Microstructure and Texture Development

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigates the effect of extrusion temperature on room temperature tensile properties of as-extruded AZ91 plates regarding microstructure and texture development. Forward extrusion was performed at 300, 350 and 400 °C with an extrusion ratio of 25:1. Yield strength rather increases from 212 to 224 MPa as extrusion temperature rises, despite grain growth from 11.9 to 41.2 µm. To understand the underlying mechanisms of this unusual hardening, the effects of microstructural features are discussed with emphasis on grain size, precipitates, stored strain energy and texture. Microscopic analyses and simulation results reveal that grain refinement, continuous precipitates and stored strain have no decisive effect on yield strength. Development of stronger basal texture leads to an increase in yield strength. Texture strengthening makes basal < a > slip more difficult to be activated when loading along the extrusion direction. Based on this, stronger basal texture plays a more dominant role in increasing yield strength.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B.L. Mordike, T. Ebert, Mater. Sci. Eng. A (2010). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  2. F. Pan, M. Yang, X. Chen, J. Mater. Sci. Technol. (2016). https://doi.org/10.1016/j.jmst.2016.07.001

    Article  Google Scholar 

  3. H. Yu, S.H. Park, B.S. You, Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.05.058

    Article  Google Scholar 

  4. C.J. Bettles, M.A. Gibson, JOM (2005). https://doi.org/10.1007/s11837-005-0095-0

    Article  Google Scholar 

  5. D.L. Atwell, M.R. Barnett, Metall. Mater. Trans. A (2007). https://doi.org/10.1007/s11661-007-9323-2

    Article  Google Scholar 

  6. S.-H. Kim, J.U. Lee, Y.J. Kim, B.G. Moon, B.S. You, H.S. Kim, S.H. Park, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.07.048

    Article  Google Scholar 

  7. W.H. Sillekens, J. Bohlen, in Advances in Wrought Magnesium Alloys, ed. by C. Bettles, M. Barnett (Woodhead Publishing Limited, Cambridge, 2012), p. 323

    Chapter  Google Scholar 

  8. S.S. Park, W.N. Tang, B.S. You, Mater. Lett. (2010). https://doi.org/10.1016/j.matlet.2009.09.062

    Article  Google Scholar 

  9. S.H. Park, S.-H. Kim, H.S. Kim, J. Yoon, B.S. You, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.01.163

    Article  Google Scholar 

  10. S.H. Park, S.-H. Kim, H.S. Kim, B.S. You, J. Alloys Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.06.219

    Article  Google Scholar 

  11. L. Cheng, M. Liang, G. Zhao, J. Zhou, C. Zhang, Vacuum (2018). https://doi.org/10.1016/j.vacuum.2018.01.036

    Article  Google Scholar 

  12. S.H. Kim, B.S. You, S.H. Park, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.08.144

    Article  Google Scholar 

  13. J. Li, J. Xie, J. Jin, Z. Wang, Trans. Nonferrous Met. Soc. China (2012). https://doi.org/10.1016/S1003-6326(11)61279-X

    Article  Google Scholar 

  14. L. Chen, S. Li, X. Chu, G. Zhao, J. Gao, Mater. Lett. (2019). https://doi.org/10.1016/j.matlet.2019.01.047

    Article  Google Scholar 

  15. C.S. Pande, K.P. Cooper, Prog. Mater Sci. (2009). https://doi.org/10.1016/j.pmatsci.2009.03.008

    Article  Google Scholar 

  16. D. Duly, J.P. Simon, Y. Brechet, Acta Metall. Mater. (1995). https://doi.org/10.1016/0956-7151(95)90266-X

    Article  Google Scholar 

  17. M.-X. Zhang, P.M. Kelly, Scripta Mater. (2003). https://doi.org/10.1016/S1359-6462(02)00555-9

    Article  Google Scholar 

  18. K.N. Braszczyńska-Malik, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.11.008

    Article  Google Scholar 

  19. S.W. Xu, N. Matsumoto, S. Kamado, T. Honma, Y. Kojima, Mater. Sci. Eng. A (2009). https://doi.org/10.1016/j.msea.2009.05.032

    Article  Google Scholar 

  20. S. Sharma, B.R. Kumar, B.P. Kashyap, N. Prabhu, Mater. Charact. (2018). https://doi.org/10.1016/j.matchar.2018.03.036

    Article  Google Scholar 

  21. J. Victoria-Hernández, J. Suh, S. Yi, J. Bohlen, W. Volk, D. Letzig, Mater. Charact. (2016). https://doi.org/10.1016/j.matchar.2016.01.002

    Article  Google Scholar 

  22. S. Subedi, R. Pokharel, A.D. Rollett, Mater. Sci. Eng. A (2015). https://doi.org/10.1016/j.msea.2015.04.051

    Article  Google Scholar 

  23. S.R. Agnew, in Deformation Mechanisms of Magnesium Alloys, ed. by C. Bettles, M. Barnett (Woodhead Publishing Limited, Cambridge, 2012)

    Chapter  Google Scholar 

  24. T. Zhu, W. Gao, I.O.P. Conf, Ser. Mater. Sci. Eng. (2009). https://doi.org/10.1088/1757-899X/4/1/012024

    Article  Google Scholar 

  25. R.C. Bonnah, Y. Fu, H. Hao, China Found. (2019). https://doi.org/10.1007/s41230-019-9067-9

    Article  Google Scholar 

  26. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, Y. Kojima, Mater. Sci. Eng. A (2009). https://doi.org/10.1016/j.msea.2009.08.062

    Article  Google Scholar 

  27. G.E. Dieter, Mechanical Metallurgy (McGraw-Hill, London, 1998)

    Google Scholar 

  28. E.O. Hall, Proc. Phys. Soc. Sect. B 64, 747 (1951)

    Article  Google Scholar 

  29. N.J. Petch, J. Iron Steel Inst. 174, 25–28 (1953)

    CAS  Google Scholar 

  30. I.A. Ovidko, R.Z. Valiev, Y.T. Zhu, Prog. Mater Sci. (2018). https://doi.org/10.1016/j.pmatsci.2018.02.002

    Article  Google Scholar 

  31. H.V. Swygenhoven, A. Caro, D. Farkas, Mater. Sci. Eng. A (2001). https://doi.org/10.1016/S0921-5093(00)01794-9

    Article  Google Scholar 

  32. H.V. Swygenhoven, Science (2002). https://doi.org/10.1126/science.1071040

    Article  Google Scholar 

  33. J. Schiøtz, K.W. Jacobsen, Science (2003). https://doi.org/10.1126/science.1086636

    Article  Google Scholar 

  34. H. Yu, Y. Xin, M. Wang, J. Mater. Sci. Technol. (2018). https://doi.org/10.1016/j.jmst.2017.07.022

    Article  Google Scholar 

  35. Y. Wang, H. Choo, Acta Mater. (2014). https://doi.org/10.1016/j.actamat.2014.08.023

    Article  Google Scholar 

  36. L. Chen, J. Zhang, G. Zhao, Z. Wang, C. Zhang, Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.01.129

    Article  Google Scholar 

  37. J. Tang, L. Chen, G. Zhao, C. Zhang, X. Chu, Mater. Sci. Eng. A (2020). https://doi.org/10.1016/j.msea.2019.138718

    Article  Google Scholar 

  38. C.S. Roberts, Magnesium and Its Alloys (Wiley, New York, 1960)

    Google Scholar 

  39. A. Styczynski, Ch. Hartig, J. Bohlen, D. Letzig, Scr. Mater. (2004). https://doi.org/10.1016/j.scriptamat.2004.01.010

    Article  Google Scholar 

  40. S. Shang, K. Deng, K. Nie, J. Li, S. Zhou, F. Xu, J. Fan, Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.05.062

    Article  Google Scholar 

  41. T. Laser, Ch. Hartig, M.R. Nürnberg, D. Letzig, R. Bormann, Acta Mater. (2008). https://doi.org/10.1016/j.actamat.2008.02.010

    Article  Google Scholar 

  42. X. Huang, Y. Chino, M. Yuasa, H. Ueda, M. Inoue, F. Kido, T. Matsumoto, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2016.10.032

    Article  Google Scholar 

  43. S.G. Hong, S.H. Park, C.S. Lee, Acta Mater. (2010). https://doi.org/10.1016/j.actamat.2010.07.002

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the Fundamental Research Program (PNK6960) of the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Sik Suh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, J.S., Suh, BC., Choi, J.O. et al. Effect of Extrusion Temperature on Mechanical Properties of AZ91 Alloy in Terms of Microstructure and Texture Development. Met. Mater. Int. 27, 2696–2705 (2021). https://doi.org/10.1007/s12540-020-00642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00642-8

Keywords

Navigation