Skip to main content
Log in

Role of Scroll Shoulder and Pin Designs on Axial Force, Material Flow and Mechanical Properties of Friction Stir Welded Al–Mg–Si Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Understanding the flow of plasticized material during friction stir welding was critical for producing quality welds. The tool geometry such as shoulder and pin designs play a significant role in altering the material flow characteristics. In the present investigation, scroll shoulder design with varying pins were addressed in the aspects of tool axial force, material flow and mechanical properties. Marker insert method was used to study the flow of plasticized material with copper as inserts. The results show that the pin geometry variation has showed a significant change in the axial force plot in the welding phase. The taper cylindrical pin tool (TS) facilitated a constant force, hexagonal pin (TS)H and pentagonal pin (TS)P tools facilitated a decreasing force behavior, and triangular pin designed tool (TS)T facilitated an increasing behavior of force in the welding phase. The material flow experiments showed that the scroll shoulder with triangular pin shaped tool (TS)T completely sheared the marker inserts in both parallel and perpendicular to weld conditions compared to other pin shapes. The sheared copper fragments were uniformly distributed on both advancing and retreating sides of the weld for (TS)T tool. Superior mechanical properties were noticed for (TS)T tool with a tensile strength of 184 MPa and Microhardness of 78 HV at stir zone.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.S. Mishra, M.W. Mahoney, Friction stir welding and processing. ASM Int. (2007). https://doi.org/10.1361/fswp2007p001

    Article  Google Scholar 

  2. W. Thomas, E. Nicholas, Friction stir welding for the transportation industries. Mater. Des. 18, 269–273 (1997). https://doi.org/10.1016/S0261-3069(97)00062-9

    Article  CAS  Google Scholar 

  3. R. Nandan, T. Debroy, H. Bhadeshia, Recent advances in friction-stir welding—process, weldment structure and properties. Prog. Mater. Sci. 53, 980–1023 (2008). https://doi.org/10.1016/j.pmatsci.2008.05.001

    Article  CAS  Google Scholar 

  4. A. Arora, A. De, T. DebRoy, Toward optimum friction stir welding tool shoulder diameter. Scr. Mater. 64, 9–12 (2011). https://doi.org/10.1016/j.scriptamat.2010.08.052

    Article  CAS  Google Scholar 

  5. H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding. Model. Simul. Mater. Sci. Eng. 12, 143–157 (2004). https://doi.org/10.1088/0965-0393/12/1/013

    Article  Google Scholar 

  6. L. Cederqvist, C.D. Sorensen, A.P. Reynolds, T. Oberg, Improved process stability during friction stir welding of 5 cm thick copper canisters through shoulder geometry and parameter studies. Sci. Technol. Weld. Join. 14, 178–184 (2009). https://doi.org/10.1179/136217109X400420

    Article  CAS  Google Scholar 

  7. Y. Huang, Y. Wang, L. Wan, H. Liu, J. Shen, J.F. Dos Santos, L. Zhou, J. Feng, Material-flow behavior during friction-stir welding of 6082-T6 aluminum alloy. Int. J. Adv. Manuf. Technol. (2016). https://doi.org/10.1007/s00170-016-8603-7

    Article  Google Scholar 

  8. I. Galvao, R.M. Leal, D.M. Rodrigues, A. Loureiro, Influence of tool shoulder geometry on properties of friction stir welds in thin copper sheets. J. Mater. Process. Technol. 213, 129–135 (2013). https://doi.org/10.1016/j.jmatprotec.2012.09.016

    Article  Google Scholar 

  9. A. Scialpi, L.A.C. De Filippis, P. Cavaliere, Influence of shoulder geometry on microstructure and mechanical properties of friction stir welded 6082 aluminium alloy. Mater. Des. 28, 1124–1129 (2007). https://doi.org/10.1016/j.matdes.2006.01.031

    Article  CAS  Google Scholar 

  10. R.M. Leal, C. Leitao, A. Loureiro, D.M. Rodrigues, P. Vilaça, Material flow in heterogeneousfriction stir welding of thin aluminium sheets: effect of shoulder geometry. Mater. Sci. Eng. A 498, 384–391 (2008). https://doi.org/10.1016/j.msea.2008.08.018

    Article  CAS  Google Scholar 

  11. K.K. Mugada, K. Adepu, Influence of tool shoulder end features on friction stir weld characteristics of Al–Mg–Si alloy. Int. J. Adv. Manuf. Technol. 99, 1553–1566 (2018). https://doi.org/10.1007/s00170-018-2602-9

    Article  Google Scholar 

  12. K.K. Mugada, K. Adepu, Role of tool shoulder end features on friction stir weld characteristics of 6082 aluminum alloy. J. Inst. Eng. Ser. C 100, 343–350 (2019). https://doi.org/10.1007/s40032-018-0451-9

    Article  Google Scholar 

  13. K.K. Mugada, K. Adepu, Influence of shoulder diameter on temperature and Z-parameter during friction stir welding of Al 6082 alloy. IOP Conf. Ser. Mater. Sci. Eng. 330, 012069 (2018). https://doi.org/10.1088/1757-899X/330/1/012069

    Article  Google Scholar 

  14. K.K. Mugada, K. Adepu, Influence of ridges shoulder with polygonal pins on material flow and friction stir weld characteristics of 6082 aluminum alloy. J. Manuf. Process. 32, 625–634 (2018). https://doi.org/10.1016/j.jmapro.2018.03.034

    Article  Google Scholar 

  15. K.K. Mugada, K. Adepu, Effect of knurling shoulder design with polygonal pins on material flow and mechanical properties during friction stir welding of Al–Mg–Si alloy. Trans. Nonferrous Met. Soc. China 29, 2281–2289 (2019). https://doi.org/10.1016/s1003-6326(19)65134-4

    Article  CAS  Google Scholar 

  16. M. Yang, R.J. Bao, X.Z. Liu, C.Q. Song, Thermo-mechanical interaction between aluminum alloy and tools with different profiles during friction stir welding. Trans. Nonferrous Met. Soc. China 29, 495–506 (2019). https://doi.org/10.1016/s1003-6326(19)64958-7

    Article  CAS  Google Scholar 

  17. A. Tongne, C. Desrayaud, M. Jahazi, E. Feulvarch, On material flow in friction stir welded Al alloys. J. Mater. Process. Technol. 239, 284–296 (2017). https://doi.org/10.1016/j.jmatprotec.2016.08.030

    Article  CAS  Google Scholar 

  18. K. Elangovan, V. Balasubramanian, Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater. Des. 29, 362–373 (2008). https://doi.org/10.1016/j.matdes.2007.01.030

    Article  CAS  Google Scholar 

  19. R. Jain, S.K. Pal, S.B. Singh, Investigation on effect of pin shapes on temperature, material flow and forces during friction stir welding: a simulation study. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2018). https://doi.org/10.1177/0954405418805615

    Article  Google Scholar 

  20. K. Elangovan, V. Balasubramanian, M. Valliappan, Effect of tool pin profile and tool rotational speed on mechanical properties of friction stir welded AA6061 aluminium alloy. Mater. Manuf. Process. 23, 251–260 (2008). https://doi.org/10.1080/10426910701860723

    Article  CAS  Google Scholar 

  21. Z. Sun, C.S. Wu, A numerical model of pin thread effect on material flow and heat generation in shear layer during friction stir welding. J. Manuf. Process. 36, 10–21 (2018). https://doi.org/10.1016/j.jmapro.2018.09.021

    Article  Google Scholar 

  22. V.M. Khojastehnezhad, H.H. Pourasl, R. Vatankhah Barenji, Effect of tool pin profile on the microstructure and mechanical properties of friction stir processed Al6061/Al2O3—TiB2 surface hybrid composite layer. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 233, 900–912 (2019). https://doi.org/10.1177/1464420717715048

    Article  CAS  Google Scholar 

  23. H. Khodaverdizadeh, A. Heidarzadeh, T. Saeid, Effect of tool pin profile on microstructure and mechanical properties of friction stir welded pure copper joints. Mater. Des. 45, 265–270 (2013). https://doi.org/10.1016/j.matdes.2012.09.010

    Article  CAS  Google Scholar 

  24. M. Imam, K. Biswas, V. Racherla, Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy. Mater. Des. 44, 23–34 (2013). https://doi.org/10.1016/j.matdes.2012.07.046

    Article  CAS  Google Scholar 

  25. M. Mehta, A. De, T. DebRoy, Material adhesion and stresses on friction stir welding tool pins. Sci. Technol. Weld. Join. 19, 534–540 (2014). https://doi.org/10.1179/1362171814y.0000000221

    Article  CAS  Google Scholar 

  26. C. Venkata Rao, G. Madhusudhan Reddy, K. Srinivasa Rao, Microstructure and pitting corrosion resistance of AA2219 Al–Cu alloy friction stir welds—effect of tool profile. Def. Technol. 11(2015), 123–131 (2015). https://doi.org/10.1016/j.dt.2014.10.003

    Article  Google Scholar 

  27. A. Amirafshar, H. Pouraliakbar, Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel. Meas. J. Int. Meas. Confed. 68, 111–116 (2015). https://doi.org/10.1016/j.measurement.2015.02.051

    Article  Google Scholar 

  28. H. Su, C. Wu, Determination of the traverse force in friction stir welding with different tool pin profiles. Sci. Technol. Weld. Join. 24, 209–217 (2019). https://doi.org/10.1080/13621718.2018.1512738

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna Kishore Mugada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mugada, K.K., Adepu, K. Role of Scroll Shoulder and Pin Designs on Axial Force, Material Flow and Mechanical Properties of Friction Stir Welded Al–Mg–Si Alloy. Met. Mater. Int. 27, 2809–2820 (2021). https://doi.org/10.1007/s12540-020-00623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00623-x

Keywords

Navigation