Skip to main content
Log in

Effect of SiC Nanofiber Addition on Microstructure, Mechanical Properties and Creep Behaviour of High Pressure Die Cast AZ91-1Sr Alloy

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Effects of nanofiber SiC (0.5 and 1 vol%) addition on microstructure, mechanical properties and creep behaviour of cold chamber high pressure die casting AZ91-1Sr alloy have been investigated. Experimental results indicate that the AZ91-1Sr alloy contains of α-Mg, β-Mg17Al12 and Al4Sr intermetallic phases. With addition of nanofiber SiC, the Al4C3 and SiC peaks were detected. Also, the mechanical properties of the matrix alloy were improved. The AZ91-1Sr-1%SiC nanocomposite displays the best yield strength and hardness increment. Furthermore, the creep resistance of the matrix alloy was increased with increasing nanofiber SiC and the best creep resistance was obtained in the AZ91-1Sr-1SiC nanocomposite. The values of stress exponents and the activation energies for experimental specimen were found between 3.17–5.54 and 103.5–155.3 kJ/mol., respectively. When considered the results obtained from the values of stress exponents, the activation energies and SEM micrographs, it was thought that the dominant creep mechanism for the matrix alloy and nanocomposites is dislocation climb controlled.

Graphic Abstract

Both of the nano-composites exhibited superior creep resistance compared to the matrix alloy under all the creep test conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Zhang, Z.Y. Cao, Y.B. Liu, G.H. Su, L.R. Cheng, J. Mater. Sci. Eng. A (2009). https://doi.org/10.1016/j.msea.2008.12.029

    Article  Google Scholar 

  2. M.O. Pekguleryuz, K.U. Kainer, A.A. Kaya, Fundamental of magnesium alloy metallurgy, 2nd edn. (Woodhead publishing limited, 2013), pp. 266–290

  3. Q. Yang, K. Guan, F. Bu, Y. Zhang, X. Qiu, T. Zheng, X. Liu, J. Meng, Mater. Charact. (2016). https://doi.org/10.1016/j.matchar.2016.01.024

    Article  Google Scholar 

  4. D.G. Prakash, D. Regener, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2007.07.017

    Article  Google Scholar 

  5. L. Katsarou, M. Mounib, W. Lefebvre, S. Vorozhtsov, M. Pavese, C. Badini, J.M. Molina-Aldareguia, C.C. Jimenez, M.T.P. Prado, H. Dieringa, Mater. Sci. Eng. A (2016). https://doi.org/10.1016/j.msea.2016.02.042

    Article  Google Scholar 

  6. Z. Junxiang, R. Luyang, G. Xinyu, F. Li, H. Henry, Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2017.10.070

    Article  Google Scholar 

  7. A. Khandelwal, K. Mani, N. Srivastava, R. Gupta, G.P. Chaudhari, Compos B (2017). https://doi.org/10.1016/j.compositesb.2017.05.007

    Article  Google Scholar 

  8. M.E. Alam, S. Han, Q.B. Nguyen, A.M.S. Hamouda, M. Gupta, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.06.020

    Article  Google Scholar 

  9. S. Ganguly, A.K. Mondal, Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.01.131

    Article  Google Scholar 

  10. H. Ferkel, B.L. Mordike, Mater. Sci. Eng. A 298, 193–199 (2001)

    Article  Google Scholar 

  11. D. Penther, A. Ghasemi, R. Riedel, C. Fleck, S. Kamrani, Mater. Sci. Eng. A (2018). https://doi.org/10.1016/j.msea.2018.09.106

    Article  Google Scholar 

  12. L. Jinling, Z. Ke, Z. Min, W. Yiguang, A. Linan, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2014.12.099

    Article  Google Scholar 

  13. K.B. Nie, X.J. Wang, K. Wu, X.S. Hu, M.Y. Zheng, Mater. Sci. Eng. A (2012). https://doi.org/10.1016/j.msea.2012.01.112

    Article  Google Scholar 

  14. J. Lan, Y. Yang, X. Li, Mater. Sci. Eng. A 386, 284–290 (2004)

    Article  Google Scholar 

  15. H. Xu, L. Xi, L. Jinling, A. Linan, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.07.194

    Article  Google Scholar 

  16. H. Kumar, G.P. Chaudhari, Mater. Sci. Eng. A (2014). https://doi.org/10.1016/j.msea.2014.04.020

    Article  Google Scholar 

  17. F. Hiroyuki, K. Katsuyoshi, U. Junko, F. Bunshi, Compos. Sci. Technol. (2011). https://doi.org/10.1016/j.compscitech.2011.01.015

    Article  Google Scholar 

  18. M. Haghshenas, M. Gupta, Defence Technol. (2018). https://doi.org/10.1016/j.dt.2018.08.008

    Article  Google Scholar 

  19. D. Zhang, D. Zhang, F. Bu, X. Li, K. Guan, Q. Yang, S. Liu, X. Liu, J. Meng, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2017.03.055

    Article  Google Scholar 

  20. P. Kumar, A.K. Mondal, S.G. Chowdhury, G. Krishna, A.K. Ray, Mater. Sci. Eng. A (2017). https://doi.org/10.1016/j.msea.2016.12.006

    Article  Google Scholar 

  21. S. Lai-Xin, S. Ping, Z. Dan, J. Qi-Chuan, Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.08.051

    Article  Google Scholar 

  22. Z. Dan, S. Ping, S. Laixin, L. Qiaoli, J. Qichuan, Appl. Surf. Sci. (2010). https://doi.org/10.1016/j.apsusc.2010.05.022

    Article  Google Scholar 

  23. D. Zhang, P. Shen, L. Shi, Q. Lin, Q. Jiang, Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.08.051

    Article  Google Scholar 

  24. M. Steinacher, P. Mrvar, F. Zupanic, RMZ 60, 239–246 (2013)

    CAS  Google Scholar 

  25. B. Nami, H. Razavi, S. Mirdamadi, S.G. Shabestari, S.M. Miresmaeili, Mater. Mater. Trans. A (2010). https://doi.org/10.1007/s11661-010-0238-y

    Article  Google Scholar 

  26. A.A. Luo, Int. Mater. Rev. 49, 13–40 (2004)

    Article  CAS  Google Scholar 

  27. D. Zang, K. Guan, Q. Yang, B. Jiang, C. Sun, N. Wang, B. Li, D. Zang, X. Li, X. Liu, Z. Cao, J. Meng, Mater. Sci. Eng. A (2019). https://doi.org/10.1016/j.msea.2018.12.074

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank TUBITAK Project Unit (Grant No:116M534) for financial support in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hüseyin Şevik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarkadaş, G., Şevik, H. Effect of SiC Nanofiber Addition on Microstructure, Mechanical Properties and Creep Behaviour of High Pressure Die Cast AZ91-1Sr Alloy. Met. Mater. Int. 27, 1839–1847 (2021). https://doi.org/10.1007/s12540-019-00560-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00560-4

Keywords

Navigation